×

A stabilized finite element method for certified solution with bounds in static and frequency analyses of piezoelectric structures. (English) Zbl 1353.74069

Summary: This paper develops a stabilization procedure in piezoelectric media to ensure the temporal stability of node-based smoothed finite element method (NS-FEM), and applies it to obtain certified solution with bounds in both static and frequency analyses of piezoelectric structures using three-node triangular elements. For such stabilized NS-FEM, two stabilization terms corresponding to squared-residuals of two equilibrium equations, i.e., mechanical stress equilibrium and electric displacement equilibrium, are added into the smoothed potential energy functional of the original NS-FEM. A gradient smoothing operation is then performed on second-order derivatives of shape functions to achieve the stabilization terms. Due to the use of divergence theory, the smoothing operation relaxes the requirement of shape functions, so that the square-residuals can be evaluated using linear elements. The effectiveness of the present stabilized NS-FEM is demonstrated via numerical examples.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74M05 Control, switches and devices (“smart materials”) in solid mechanics
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Benjeddou, A., Advances in piezoelectric finite element modeling of adaptive structural elements: a survey, Comput. Struct., 76, 347-363 (2000)
[2] Allik, H.; Hughes, T. J.R., Finite element method for piezo-electric vibration, Int. J. Numer. Methods Engrg., 2, 151-157 (1970)
[3] Tzou, H. S.; Tseng, C. I., Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a finite element approach, J. Sound Vib., 138, 17-34 (1990)
[4] Cannarozzi, A. A.; Ubertini, F., Some hybrid variational methods for linear electroelasticity problems, Int. J. Solids Struct., 38, 2573-2596 (2001) · Zbl 0977.74021
[5] Sze, K. Y.; Pan, Y. S., Hybrid finite element models for piezoelectric materials, J. Sound Vib., 226, 519-547 (1999)
[6] Sze, K. Y.; Yang, X. M.; Yao, L. Q., Stabilized plane and axisymmetric piezoelectric finite element models, Finite Elem. Anal. Des., 40, 1105-1122 (2004)
[7] Long, C. S.; Loveday, P. W.; Groenwold, A. A., Planar four-node piezoelectric with drilling degrees of freedom, Int. J. Numer. Methods Engrg., 65, 1802-1830 (2006) · Zbl 1112.74062
[8] Nguyen, V. P.; Rabczuk, T.; Duflot, S. BordasM., Meshless methods: a review and computer implementation aspects, Math. Comput. Simul., 79, 763-813 (2008) · Zbl 1152.74055
[9] Ohs, R. R.; Aluru, N. R., Meshless analysis of piezoelectric devices, Comput. Mech., 27, 23-36 (2001) · Zbl 1005.74078
[10] Liu, G. R.; Dai, K. Y.; Lim, K. M.; Gu, Y. T., A point interpolation meshfree method for static and frequency analysis of two-dimensional piezoelectric structures, Comput. Mech., 29, 510-519 (2002) · Zbl 1146.74371
[11] Liu, G. R.; Dai, K. Y.; Lim, K. M.; Gu, Y. T., A radial point interpolation method for simulation of two-dimensional piezoelectric structures, Smart Mater Struct., 12, 171-180 (2003)
[12] Bui, T. Q.; Nguyen, M. N.; Zhang, C. Z.; Pham, D. A.K., An efficient meshfree method for analysis of two-dimensional piezoelectric structures, Smart Mater. Struct., 20, 065016 (2011)
[13] Li, Z. R.; Lim, C. W.; Wu, C. C., Bound theorem and implementation of dual finite elements for fracture assessment of piezoelectric materials, Comput. Mech., 36, 205-216 (2005) · Zbl 1096.74045
[14] Wu, C. C.; Xiao, Q. Z.; Yagawa, G., Dual analysis for path integrals and bounds for crack parameter, Int. J. Solids Struct., 35, 1635-1652 (1998) · Zbl 0920.73327
[15] Veubeke, B. F., Displacement and equilibrium models in the finite element method, (Zienkiewicz, O. C.; Holister, G. S., Stress Analysis (1965), Wiley: Wiley London) · Zbl 0327.73038
[16] Ladeveze, P.; Pelle, J. P.; Rougeot, P., Error estimation and mesh optimization for classical finite elements, Engrg. Comput., 8, 69-80 (1991)
[17] Coorevits, P.; Ladevezex, P.; Pelle, J. P., An automatic procedure with a control of accuracy for finite element analysis in 2D elasticity, Comput. Methods Appl. Mech. Engrg., 121, 91-121 (1995) · Zbl 0851.73056
[18] Almeida, J. P.M.; Freitasx, J. P.M., Alternative approach to the formulation of hybrid equilibrium finite elements, Comput. Struct., 40, 1043-1047 (1991)
[19] Chen, J. S.; Wu, C. T.; Yoon, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int. J. Numer. Methods Engrg., 50, 435-466 (2001) · Zbl 1011.74081
[20] Yoo, J. W.; Moran, B.; Chen, J. S., Stabilized conforming nodal integration in the natural-element method, Int. J. Numer. Methods Engrg., 8, 61-90 (2004)
[21] Liu, G. R., A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods, Int. J. Comput. Methods, 5, 2, 199-236 (2008) · Zbl 1222.74044
[22] Liu, G. R., A G space theory and weakened weak \((W^2)\) form for a unified formulation of compatible and incompatible methods: Part I Theory, Int. J. Numer. Methods Engrg., 81, 1093-1126 (2009) · Zbl 1183.74358
[23] Liu, G. R.; Dai, K. Y.; Nguyen, T. T., A smoothed finite element method for mechanics problems, Comput. Mech., 39, 859-877 (2007) · Zbl 1169.74047
[24] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analysis, J. Sound Vib., 320, 1100-1130 (2009)
[25] Nguyen-Xuan, H.; Liu, G. R.; Nguyen-Thoi, T.; Nguyen-Tran, C., An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures, Smart Mater. Struct., 18, 065015 (2009)
[26] Nguyen-Van, H.; Mai-Duy, N.; Tran-Cong, T., A smoothed four-node piezoelectric element for analysis of two-dimensional smart structures, CMES-Comput. Model. Engrg. Sci., 23, 3, 209-222 (2008) · Zbl 1232.74108
[27] Chen, L.; Nguyen-Xuan, H.; Nguyen-Thoi, T.; Zeng, K. Y.; Wu, S. C., Assessment of smoothed point interpolation methods for elastic mechanics, Commun. Numer. Methods Engrg., 89, 1635-1655 (2010) · Zbl 1323.74080
[28] Liu, G. R.; Nguyen-Thoi, T.; Lam, K. Y., A node-based smoothed finite element method for upper bound solution to solid problems (NS-FEM), Comput. Struct., 87, 14-26 (2008)
[29] Liu, G. R.; Zhang, G. Y., Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM), Int. J. Numer. Methods Engrg., 74, 1128-1161 (2008) · Zbl 1158.74532
[30] Liu, G. R.; Chen, L.; Nguyen-Thoi, T.; Zeng, K. Y.; Zhang, G. Y., A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of fracture problems, Int. J. Numer. Methods Engrg., 83, 1466-1497 (2010) · Zbl 1202.74179
[31] Puso, M. A.; Chen, J. S.; Zywicz, E.; Elmer, W., Meshfree and finite element nodal integration methods, Int. J. Numer. Methods Engrg., 74, 416-446 (2008) · Zbl 1159.74456
[32] Puso, M. A.; Solberg, J., A stabilized nodally integrated tetrahedral, Int. J. Numer. Methods Engrg., 67, 841-867 (2006) · Zbl 1113.74075
[33] Dohrmann, C. R.; Heinstein, M. W.; Jung, J.; Key, S. W.; Witkowski, W. R., Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes, Int. J. Numer. Methods Engrg., 47, 1549-1568 (2000) · Zbl 0989.74067
[34] Rabczuk, T.; Belytschko, T.; Xiao, Q., Stable particle methods based on lagrangian kernels, Comput. Methods Appl. Mech. Engrg., 193, 1035-1063 (2004) · Zbl 1060.74672
[35] Rabczuk, T.; Belytschko, T., A three dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. Methods Appl. Mech. Engrg., 196, 2777-2797 (2007) · Zbl 1128.74051
[36] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput. Methods Appl. Mech. Engrg., 139, 49-74 (1996) · Zbl 0918.73329
[37] Zhang, Z. Q.; Liu, G. R., Temporal stabilization of the node-based smoothed finite element method and solution bound of linear elastostatics and vibration problem, Comput. Mech., 46, 229-246 (2010) · Zbl 1398.74431
[38] Cook, R., Improved two-dimensional finite element, J. Struct. Division ASCE, 100, ST6, 1851-1863 (1974)
[39] C.D. Mercer, B.D. Reddy, R.A. Eve, Finite Element Method for Piezoelectric Media Applied Mechanics Research Unit Technical Report No. 92, University of Cape Town/CSIR, 1987.; C.D. Mercer, B.D. Reddy, R.A. Eve, Finite Element Method for Piezoelectric Media Applied Mechanics Research Unit Technical Report No. 92, University of Cape Town/CSIR, 1987.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.