×

Symplectic model reduction of Hamiltonian systems on nonlinear manifolds and approximation with weakly symplectic autoencoder. (English) Zbl 1537.65193

Summary: Classical model reduction techniques project the governing equations onto linear subspaces of the high-dimensional state-space. For problems with slowly decaying Kolmogorov-\(n\)-widths such as certain transport-dominated problems, however, classical linear-subspace reduced-order models (ROMs) of low dimension might yield inaccurate results. Thus, the concept of classical linear-subspace ROMs has to be extended to more general concepts, like model order teduction (MOR) on manifolds. Moreover, as we are dealing with Hamiltonian systems, it is crucial that the underlying symplectic structure is preserved in the reduced model, as otherwise it could become unphysical in the sense that the energy is not conserved or stability properties are lost. To the best of our knowledge, existing literature addresses either MOR on manifolds or symplectic model reduction for Hamiltonian systems, but not their combination. In this work, we bridge the two aforementioned approaches by providing a novel projection technique called symplectic manifold Galerkin (SMG), which projects the Hamiltonian system onto a nonlinear symplectic trial manifold such that the reduced model is again a Hamiltonian system. We derive analytical results such as stability, energy-preservation, and a rigorous a posteriori error bound. Moreover, we construct a weakly symplectic deep convolutional autoencoder as a computationally practical approach to approximate a nonlinear symplectic trial manifold. Finally, we numerically demonstrate the ability of the method to achieve higher accuracy than (non-)structure-preserving linear-subspace ROMs and non-structure-preserving MOR on manifold techniques.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
37J25 Stability problems for finite-dimensional Hamiltonian and Lagrangian systems
37M15 Discretization methods and integrators (symplectic, variational, geometric, etc.) for dynamical systems
37N30 Dynamical systems in numerical analysis

Software:

Adam; PyTorch; darch

References:

[1] Abraham, R. and Marsden, J. E., Foundations of Mechanics. 2nd ed., CRC Press, Boca Raton, FL, 1987.
[2] Beattie, C., Gugercin, S., and Mehrmann, V., Structure-preserving interpolatory model reduction for port-Hamiltonian differential-algebraic systems, in Realization and Model Reduction of Dynamical Systems, Springer, Cham, 2022, pp. 235-254. · Zbl 1504.93033
[3] Benner, P., Ohlberger, M., Cohen, A., and Willcox, K., Model Reduction and Approximation: Theory and Algorithms, , SIAM, Philadelphia, 2017, doi:10.1137/1.9781611974829. · Zbl 1378.65010
[4] Bhatt, A. and Moore, B. E., Structure-preserving exponential Runge-Kutta methods, SIAM J. Sci. Comput., 39 (2017), pp. A593-A612, doi:10.1137/16M1071171. · Zbl 1365.65271
[5] Black, F., Schulze, P., and Unger, B., Projection-based model reduction with dynamically transformed modes, ESAIM Math. Model. Numer. Anal., 54 (2020), pp. 2011-2043. · Zbl 1470.35276
[6] Buchfink, P., Bhatt, A., and Haasdonk, B., Symplectic model order reduction with non-orthonormal bases, Math. Comput. Appl., 24 (2019), 43
[7] Buchfink, P., Haasdonk, B., and Rave, S., PSD-greedy basis generation for structure-preserving model order reduction of Hamiltonian systems, in Proceedings of ALGORITMY, , 2020, pp. 151-160.
[8] Cagniart, N., Maday, Y., and Stamm, B., Model order reduction for problems with large convection effects, in Contributions to Partial Differential Equations and Applications, Springer, Cham, 2019, pp. 131-150. · Zbl 1416.35021
[9] Cannas Da Silva, A., Lectures on Symplectic Geometry, Springer, New York, 2008.
[10] Carlberg, K., Adaptive h-refinement for reduced-order models, Internat. J. Numer. Methods Engrg., 102 (2015), pp. 1192-1210. · Zbl 1352.65136
[11] Carlberg, K., Barone, M., and Antil, H., Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction, J. Comput. Phys., 330 (2017), pp. 693-734. · Zbl 1378.65145
[12] Carlberg, K., Bou-Mosleh, C., and Farhat, C., Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Internat. J. Numer. Methods Engrg., 86 (2011), pp. 155-181. · Zbl 1235.74351
[13] Carlberg, K., Tuminaro, R., and Boggs, P., Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics, SIAM J. Sci. Comput., 37 (2015), pp. B153-B184, doi:10.1137/140959602. · Zbl 1320.65193
[14] Chaturantabut, S., Beattie, C., and Gugercin, S., Structure-preserving model reduction for nonlinear port-Hamiltonian systems, SIAM J. Sci. Comput., 38 (2016), pp. B837-B865, doi:10.1137/15M1055085. · Zbl 1376.37120
[15] Cruz Varona, M., Model Reduction of Nonlinear Dynamical Systems by System-Theoretic Methods, Dissertation, Technische Universität München, München, Germany, 2020.
[16] Deco, G. and Brauer, W., Nonlinear higher-order statistical decorrelation by volume-conserving neural architectures, Neural Netw., 8 (1995), pp. 525-535.
[17] Ehrlacher, V., Lombardi, D., Mula, O., and Vialard, F.-X., Nonlinear model reduction on metric spaces. Application to one-dimensional conservative PDEs in Wasserstein spaces, ESAIM Math. Model. Numer. Anal., 54 (2020), pp. 2159-2197. · Zbl 1476.65267
[18] Fresca, S., Dedé, L., and Manzoni, A., A comprehensive deep learning-based approach to reduced order modeling of nonlinear time-dependent parametrized PDEs, J. Sci. Comput., 87 (2021), pp. 1-36. · Zbl 1470.65166
[19] Glas, S., Patera, A. T., and Urban, K., A reduced basis method for the wave equation, Int. J. Comput. Fluid Dyn., 34 (2020), pp. 139-146. · Zbl 1484.65218
[20] Glorot, X. and Bengio, Y., Understanding the difficulty of training deep feedforward neural networks, in Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, , PMLR, 2010, pp. 249-256.
[21] Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, Cambridge, MA, 2016. · Zbl 1373.68009
[22] Greif, C. and Urban, K., Decay of the Kolmogorov n-width for wave problems, Appl. Math. Lett., 96 (2019), pp. 216-222. · Zbl 1423.35242
[23] Gu, C., Model Order Reduction of Nonlinear Dynamical Systems, Dissertation, University of California Berkeley, Berkeley, CA, 2011.
[24] Hairer, E., Lubich, C., and Wanner, G., Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd ed., , Springer, Berlin, 2006. · Zbl 1094.65125
[25] He, K., Zhang, X., Ren, S., and Sun, J.. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in Proceedings of the IEEE International Conference on Computer Vision, , IEEE, Washington, DC, 2015, pp. 1026-1034.
[26] Hesthaven, J. S. and Pagliantini, C., Structure-preserving reduced basis methods for Poisson systems, Math. Comput., 90 (2021), pp. 1701-1740. · Zbl 1465.37095
[27] Hesthaven, J. S., Pagliantini, C., and Ripamonti, N., Rank-Adaptive Structure-Preserving Reduced Basis Methods for Hamiltonian Systems, preprint, https://arxiv.org/abs/2007.13153, 2020.
[28] Hinton, G. E. and Salakhutdinov, R. R., Reducing the dimensionality of data with neural networks, Science, 313 (2006), pp. 504-507. · Zbl 1226.68083
[29] Hutchinson, M., A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines, Commun. Stat. Sim. Comput., 18 (1989), pp. 1059-1076. · Zbl 0695.62113
[30] Iollo, A. and Lombardi, D., Advection modes by optimal mass transfer, Phys. Rev. E, 89 (2014), 022923.
[31] Jin, P., Zhang, Z., Zhu, A., Tang, Y., and Karniadakis, G., Sympnets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems, Neural Netw., 132 (2020), pp. 166-179. · Zbl 1475.68316
[32] Kim, Y., Choi, Y., Widemann, D., and Zohdi, T., A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder, J. Comput. Phys., 451 (2022), 110841. · Zbl 07517153
[33] Kingma, D. P. and Ba, J., Adam: A Method for Stochastic Optimization, preprint, https://arxiv.org/abs/1412.6980, 2014.
[34] Kohonen, T., Self-organized formation of topologically correct feature maps, Biol. Cybernet., 43 (1982), pp. 59-69. · Zbl 0466.92002
[35] Kunisch, K. and Volkwein, S., Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., 90 (2001), pp. 117-148. · Zbl 1005.65112
[36] Lall, S., Krysl, P., and Marsden, J. E., Structure-preserving model reduction for mechanical systems, Phys. D, 184 (2003), pp. 304-318. · Zbl 1041.70011
[37] Lawrence, N. D., Gaussian process latent variable models for visualisation of high dimensional data, in Neural Information Processing Systems, Vancouver, Canada, 2003, pp. 329-336.
[38] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P., Gradient-based learning applied to document recognition, Proc. IEEE, 86 (1998), pp. 2278-2324.
[39] Lee, J. M., Introduction to Smooth Manifolds, Springer-VerlagNew York, 2003.
[40] Lee, K. and Carlberg, K., Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys., 404 (2020), 108973. · Zbl 1454.65184
[41] Lee, K. and Carlberg, K. T., Deep conservation: A latent-dynamics model for exact satisfaction of physical conservation laws, in Proceedings of the 35th AAAI Conference on Artificial Intelligence, , 2021, pp. 277-285.
[42] Maboudi Afkham, B. and Hesthaven, J. S., Structure preserving model reduction of parametric Hamiltonian systems, SIAM J. Sci. Comput., 39 (2017), pp. A2616-A2644, doi:10.1137/17M1111991. · Zbl 1379.78019
[43] Marsden, J. E. and Ratiu, T. S., Introduction to Mechanics and Symmetry, 2nd ed., , Springer, New York, 1999. · Zbl 0933.70003
[44] Meyer, K. and Offin, D., Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. 3rd ed., Springer, Cham, 2017. · Zbl 1372.70002
[45] Morrison, P. J., The Maxwell-Vlasov equations as a continuous Hamiltonian system, Phys. Lett. A, 80 (1980), pp. 383-386.
[46] Ohlberger, M. and Rave, S., Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing, C. R. Math. Acad. Sci. Paris, 351 (2013), pp. 901-906. · Zbl 1281.65117
[47] Ohlberger, M. and Rave, S., Reduced basis methods: Success, limitations and future challenges, in Proceedings of ALGORITMY, , 2016, pp. 1-12.
[48] Ohlberger, M. and Schindler, F., Error control for the localized reduced basis multiscale method with adaptive on-line enrichment, SIAM J. Sci. Comput., 37 (2015), pp. A2865-A2895, doi:10.1137/151003660. · Zbl 1329.65255
[49] Pagliantini, C., Dynamical reduced basis methods for Hamiltonian systems, Numer. Math., 148 (2021), pp. 409-448. · Zbl 1471.65217
[50] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S., PyTorch: An imperative style, high-performance deep learning library, in Neural Information Processing Systems, 2019, pp. 8026-8037.
[51] Peherstorfer, B., Model reduction for transport-dominated problems via online adaptive bases and adaptive sampling, SIAM J. Sci. Comput., 42 (2020), pp. A2803-A2836, doi:10.1137/19M1257275. · Zbl 1453.65286
[52] Peherstorfer, B. and Willcox, K., Online adaptive model reduction for nonlinear systems via low-rank updates, SIAM J. Sci. Comput., 37 (2015), pp. A2123-A2150, doi:10.1137/140989169. · Zbl 1323.65102
[53] Peng, L. and Mohseni, K., Symplectic model reduction of Hamiltonian systems, SIAM J. Sci. Comput., 38 (2016), pp. A1-A27, doi:10.1137/140978922. · Zbl 1330.65193
[54] Polyuga, R. V. and Van der Schaft, A., Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity, Automatica J. IFAC, 46 (2010), pp. 665-672. · Zbl 1193.93085
[55] Reiss, J., Schulze, P., Sesterhenn, J., and Mehrmann, V., The shifted proper orthogonal decomposition: A mode decomposition for multiple transport phenomena, SIAM J. Sci. Comput., 40 (2018), pp. A1322-A1344, doi:10.1137/17M1140571. · Zbl 1446.65212
[56] Rim, D., Peherstorfer, B., and Mandli, K., Manifold Approximations via Transported Subspaces: Model Reduction for Transport-Dominated Problems, preprint, https://arxiv.org/abs/1912.13024, 2019.
[57] Schölkopf, B., Smola, A., and Müller, K.-R., Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10 (1998), pp. 1299-1319.
[58] Sharma, H., Wang, Z., and Kramer, B., Hamiltonian operator inference: Physics-preserving learning of reduced-order models for canonical Hamiltonian systems, Phys. D, 431 (2022), 133122. · Zbl 1487.65193
[59] Taddei, T. and Zhang, L., Space-time registration-based model reduction of parameterized one-dimensional hyperbolic PDEs, ESAIM Math. Model. Numer. Anal., 55 (2021), pp. 99-130. · Zbl 1477.65248
[60] Uzunca, M., Karasözen, B., and Yildiz, S., Structure-preserving reduced-order modeling of Korteweg-de Vries equation, Math. Comput. Simul., 188 (2021), pp. 193-211. · Zbl 1540.65337
[61] Walder, C. and Schölkopf, B., Diffeomorphic dimensionality reduction, in Neural Information Processing Systems, Vancouver, Canada, 2008, pp. 1713-1720.
[62] Welper, G., Interpolation of functions with parameter dependent jumps by transformed snapshots, SIAM J. Sci. Comput., 39 (2017), pp. A1225-A1250, doi:10.1137/16M1059904. · Zbl 1370.41050
[63] Wenzel, T., Kurz, M., Beck, A., Santin, G., and Haasdonk, B., Structured deep kernel networks for data-driven closure terms of turbulent flows, in Large-Scale Scientific Computing, Lirkov, I. and Margenov, S. , eds., Springer, Cham, 2022, pp. 410-418.
[64] Xu, H., A numerical method for computing an SVD-like decomposition, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 1058-1082, doi:10.1137/S0895479802410529. · Zbl 1114.65036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.