×

Simple algebraic groups with the same maximal tori, weakly commensurable Zariski-dense subgroups, and good reduction. (English) Zbl 07801725

Let \(G\) be a reductive group over a field \(k\). Given a discrete valuation \(v\) of \(k\), one says that \(G\) has good reduction at \(v\) if there is a reductive group scheme \(\mathcal{G}\) over \(\mathcal{O}_v\) whose generic fiber is isomorphic to \(G\times_kk_v\). (Here \(k_v\) denotes the completion of \(k\) at \(v\) and \(\mathcal{O}_v\) denotes the valuation ring of \(k_v\).) When \(G\) is an absolutely almost simple group, the genus \(\mathbf{gen}_k(G)\) is the set of \(k\)-isomorphism classes of inner \(k\)-forms of \(G\) that have the same isomorphism classes of maximal tori as \(G\).
The first main result of this paper is the following theorem relating the genus problem to good reduction.
Theorem 1.1. Suppose \(G\) is absolutely almost simple. Let \(v\) be a discrete valuation of \(k\) whose residue field \(k^{(v)}\) is a finitely generated field. Assume further that \(\mathrm{char}(k^{(v)})\neq 2\) if \(G\) is of type \(B_l\) (\(l\ge 2\)). If \(G\) has good reduction at \(v\), then any \(G'\in\mathbf{gen}_k(G)\) also has good reduction at \(v\), and the reduction \(\underline{G}'{}^{(v)}\) of \(G'\) at \(v\) lies in the genus \(\mathbf{gen}_{k^{(v)}}(\underline{G}^{(v)})\) of the reduction \(\underline{G}^{(v)}\).
In the proof of Theorem 1.1, a new approach to good reduction is developed, and it shows that for absolutely almost simple groups the existence of good reduction can be characterized in terms of the existence of maximal tori with certain specific properties.
The paper exhibits a number of applications of Theorem 1.1 and the new characterization of good reduction in terms of maximal tori. Some of these applications are concerned with the case where \(k\) is a finitely generated field of good characteristic (and \(G\) is absolutely almost simple). In this case we have:
Corollary 1.2. Assume \(k\) is infinite. Let \(V\) be a divisorial set of valuations of \(k\). (That is, \(V\) is the set of discrete valuations of \(k\) defined by prime divisors of a normal model of \(k\) over \(\mathbb{Z}\).) Then there exists a finite subset \(S\subseteq V\) such that every \(G'\in\mathbf{gen}_k(G)\) has good reduction at all \(v\in V\setminus S\).
Let us mention some results that reveal some effects of a purely transcendental extension on the genus.
Theorem 1.3. Let \(K=k(x)\) be a one-variable rational function field. Then every \(H\in \mathbf{gen}_K(G\times_kK)\) is of the form \(H_0\times_kK\) for some \(H_0\in\mathbf{gen}_k(G)\).
When \(k\) is a number field and \(G\) is simply connected, Theorem 1.3 implies that \(\mathbf{gen}_K(G\times_kK)\) is finite for any purely transcendental extension \(K=k(x_1,\cdots, x_m)\) of transcendence degree \(m\ge 1\).
The following theorem is an example of a new phenomenon which the authors have termed “killing the genus by a purely transcendental extension”.
Theorem 1.6. Suppose \(G\) is of type \(G_2\) and \(K=k(x_1,\cdots, x_6)\). Then \(\mathbf{gen}_K(G\times_kK)\) is a singleton.
The authors conjecture that for any Cartan-Killing type there is an integer \(m\ge 1\) such that for any absolutely almost simple group \(G\) of that type, every \(H\in\mathbf{gen}_K(G\times_kK)\) is of the form \(H_0\times_kK\), where \(H_0\) has the property that \(H_0\times_kF\in\mathbf{gen}_F(G\times_kF)\) for any field extension \(F/k\).
As another application of the new characterization of good reduction, the authors prove some results (e.g., Theorems 1.8 and 9.5) that relate the presence of finitely generated Zariski dense subgroups in \(G(k)\) weakly commensurable to a given one with good reduction. They also obtain a first example of applying arithmetic geometrical techniques to non-arithmetic Riemann surfaces (Theorem 1.9).
In the last part of the paper, the authors prove several results about the genus problem and good reduction form simple groups of type \(F_4\). See, e.g., Theorems 1.10–1.13.

MSC:

11E72 Galois cohomology of linear algebraic groups
14L15 Group schemes
20G15 Linear algebraic groups over arbitrary fields

References:

[1] Abramenko, P.; Rapinchuk, A. S.; Rapinchuk, I. A., Applications of the Fixed Point Theorem for group actions on buildings to algebraic groups over polynomial rings. J. Algebra (2023)
[2] Amitsur, S., Generic splitting fields of central simple algebras. Ann. Math. (2), 1, 8-43 (1955) · Zbl 0066.28604
[3] Borel, A., Linear Algebraic Groups. GTM (1991), Springer · Zbl 0726.20030
[4] Borel, A.; Springer, T. A., Rationality properties of linear algebraic groups II. Tohoku Math. J., 443-497 (1968) · Zbl 0211.53302
[5] Bourbaki, N., Groupes and algèbres de Lie, ch. IV-VI (1968), Hermann · Zbl 0186.33001
[6] Bruhat, F.; Tits, J., Groupes réductifs sur un corps local. I. Données radicielles valuées. Publ. Math. IHES, 5-251 (1972) · Zbl 0254.14017
[7] Bruhat, F.; Tits, J., Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée. Publ. Math. IHES, 5-184 (1984)
[8] Bruhat, F.; Tits, J., Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne. J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., 671-698 (1987) · Zbl 0657.20040
[9] Calmès, B.; Fasel, J., Groupes classiques, Autour des schémas en groupes, vol. II. Panoramas et Synthèses, 1-133 (2015), Soc. math. de France · Zbl 1360.20048
[10] Chernousov, V., The kernel of the Rost invariant, Serre’s Conjecture II and the Hasse principle for quasi-split groups \({}^{3 , 6}D_4, E_6\) and \(E_7\). Math. Ann., 297-330 (2003) · Zbl 1036.20040
[11] Chernousov, V., Variations on a theme of groups splitting by a quadratic extension and Grothendieck-Serre conjecture for group schemes \(F_4\) with trivial \(g_3\) invariant. Doc. Math., 147-169 (2010), Extra vol.: Andrei A. Suslin sixtieth birthday · Zbl 1210.14050
[12] Chernousov, V.; Gille, P.; Pianzola, A., Torsors over the punctured affine line. Am. J. Math., 6, 1541-1583 (2012) · Zbl 1279.14059
[13] Chernousov, V. I.; Rapinchuk, A. S.; Rapinchuk, I. A., The genus of a division algebra and the unramified Brauer group. Bull. Math. Sci., 211-240 (2013) · Zbl 1293.16015
[14] Chernousov, V. I.; Rapinchuk, A. S.; Rapinchuk, I. A., On the size of the genus of a division algebra. Proc. Steklov Inst. Math., 1, 63-93 (2016) · Zbl 1356.16013
[15] Chernousov, V. I.; Rapinchuk, A. S.; Rapinchuk, I. A., On some finiteness properties of algebraic groups over finitely generated fields. C. R. Acad. Sci. Paris, Ser. I, 869-873 (2016) · Zbl 1376.14049
[16] Chernousov, V. I.; Rapinchuk, A. S.; Rapinchuk, I. A., Spinor groups with good reduction. Compos. Math., 484-527 (2019) · Zbl 1443.11031
[17] Chernousov, V. I.; Rapinchuk, A. S.; Rapinchuk, I. A., The finiteness of the genus of a finite-dimensional division algebras, and some generalizations. Isr. J. Math., 2, 747-799 (2020) · Zbl 1467.16018
[18] Collins, M., On Jordan’s theorem for complex linear groups. J. Group Theory, 4, 411-423 (2007) · Zbl 1125.20033
[19] Colliot-Thélène, J.-L., Birational Invariants, Purity, and the Gersten Conjecture. Proc. Symp. Pure Math., 1-64 (1995), AMS · Zbl 0834.14009
[20] Conrad, B., Reductive group schemes, 93-444 · Zbl 1349.14151
[21] Conrad, B., Non-split reductive groups over \(\mathbb{Z} \), 193-253 · Zbl 1356.14033
[22] (Demazure, M.; Grothendieck, A., Schémas en groupes, vol. III: Structure des schémas en groupes réductifs (SGA3). Schémas en groupes, vol. III: Structure des schémas en groupes réductifs (SGA3), Lect. Notes Math., vol. 153 (1970), Springer)
[23] Fedorov, R.; Panin, I., A proof of the Grothendieck-Serre conjecture on principal bundles over regular local rings containing infinite fields. Publ. Math. IHES, 169-193 (2015) · Zbl 1330.14077
[24] Fried, M. D.; Jarden, M., Field Arithmetic (2005), Springer · Zbl 1055.12003
[25] Garibaldi, S.; Merkurjev, A.; Serre, J.-P., Cohomological Invariants in Galois Cohomology. University Lecture Series (2003), AMS · Zbl 1159.12311
[26] Gille, P., Torseurs sur la droite affine. Transform. Groups. Transform. Groups, 3, 267-269 (2005), errata
[27] P. Gille, S. Gosavi, Bruhat-Tits decomposition, preprint, 2021.
[28] Görtz, U.; Wedhorn, T., Algebraic Geometry I. Schemes – with Examples and Exercises (2020), Springer · Zbl 1444.14001
[29] Gross, B. H., Groups over \(\mathbb{Z} \). Invent. Math., 263-279 (1996) · Zbl 0846.20049
[30] Guo, N., The Grothendieck-Serre conjecture over semilocal Dedekind rings. Transform. Groups, 3, 897-917 (2022) · Zbl 1506.14096
[31] Harder, G., Halbeinfache Gruppenschemata über Dedekindringen. Invent. Math., 165-191 (1967) · Zbl 0158.39502
[32] Izhboldin, O. T., Motivic equivalence of quadratic forms. Doc. Math., 341-351 (1998) · Zbl 0957.11019
[33] Huppert, B., Endliche Gruppen. I. Die Grundlehren der mathematischen Wissenschaften (1967), Springer: Springer Berlin-New York · Zbl 0217.07201
[34] Kaletha, T.; Prasad, G., Bruhat-Tits Theory: a New Approach (2023), Cambridge Univ. Press · Zbl 1516.20003
[35] Karpenko, N. A., Criteria of motivic equivalence for quadratic forms and central simple algebras. Math. Ann., 3, 585-611 (2000) · Zbl 0965.11015
[36] Kato, K., A Hasse principle for two dimensional global fields, with an appendix by J.-L. Colliot-Thélène. J. Reine Angew. Math., 142-183 (1986) · Zbl 0576.12012
[37] Klyachko, A. A., Tori without affect in semisimple groups, 67-78, (in Russian) · Zbl 0770.20023
[38] Knus, M.-A.; Merkurjev, A.; Rost, M.; Tignol, J.-P., The Book of Involutions (1998), AMS · Zbl 0955.16001
[39] Lam, T.-Y., A First Course in Noncommutative Rings. GTM (2001), Springer · Zbl 0980.16001
[40] Lam, T. Y., Introduction to Quadratic Forms over Fields. GSM (2005), AMS · Zbl 1068.11023
[41] Lang, S., Algebra. GTM (2002), Springer · Zbl 0984.00001
[42] Maclachlan, C.; Reid, A. W., The Arithmetic of Hyperbolic 3-Manifolds. GTM (2003), Springer · Zbl 1025.57001
[43] Margulis, G. A., Discrete Subgroups of Semisimple Lie Groups (1991), Springer · Zbl 0732.22008
[44] Matzri, E., A birational interpretation of Severi-Brauer varieties. Commun. Algebra, 2, 484-489 (2020) · Zbl 1433.16020
[45] Merkurjev, A. S., On the norm residue symbol of degree 2. Dokl. Akad. Nauk SSSR, 3, 542-547 (1981)
[46] Merkurjev, A. S.; Suslin, A. A., \(K\)-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR, Ser. Mat., 5, 1011-1046 (1982)
[47] Milne, J. S., Étale cohomology (1980), Princeton Univ. Press · Zbl 0433.14012
[48] Nart, E.; Xarles, X., Additive reduction of algebraic tori. Arch. Math. (Basel), 5, 460-466 (1991) · Zbl 0782.14042
[49] Nisnevich, Y. A., Étale cohomology and Arithmetic of Semisimple Groups (1982), Harvard University, ProQuest LLC: Harvard University, ProQuest LLC Ann Arbor, MI, Thesis (Ph.D.)
[50] Nisnevich, Y. A., Espaces homogènes principaux rationnellement triviaux et arithmètique des schémas en groupes réductifs sur les anneaux de Dedekind. C. R. Acad. Sci. Paris, Ser. I, Math., 1, 5-8 (1984) · Zbl 0587.14033
[51] Neukirch, J.; Schmidt, A.; Wingberg, K., Cohomology of Number Fields (2000), Springer · Zbl 0948.11001
[52] Panin, I., Proof of Grothendieck-Serre’s conjecture on principle bundles over regular local rings containing a finite field
[53] Petersson, H., A survey on Albert algebras. Transform. Groups, 1, 219-278 (2019) · Zbl 1457.17025
[54] Platonov, V. P.; Rapinchuk, A. S., Algebraic Groups and Number Theory (1993), Academic Press · Zbl 0806.11002
[55] Prasad, G., A new approach to unramified descent in Bruhat-Tits theory. Am. J. Math., 215-253 (2020) · Zbl 1480.20079
[56] Prasad, G.; Rapinchuk, A. S., Irreducible tori in semisimple groups. Int. Math. Res. Not., 1229-1242 (2001) · Zbl 1057.22025
[57] Prasad, G.; Rapinchuk, A. S., Existence of irreducible \(\mathbb{R} \)-regular elements in Zariski-dense subgroups. Math. Res. Lett., 1, 21-32 (2003) · Zbl 1029.22020
[58] Prasad, G.; Rapinchuk, A. S., Weakly commensurable arithmetic groups and isospectral locally symmetric spaces. Publ. Math. IHES, 113-184 (2009) · Zbl 1176.22011
[59] Prasad, G.; Rapinchuk, A. S., On the fields generated by the lengths of closed geodesics in locally symmetric spaces. Geom. Dedic., 79-120 (2014) · Zbl 1308.53077
[60] Prasad, G.; Rapinchuk, A. S., Weakly commensurable groups, with applications to differential geometry, 495-524
[61] Prasad, G.; Rapinchuk, A. S., Generic elements of a Zariski-dense subgroup form an open subset. Trans. Mosc. Math. Soc., 299-314 (2017) · Zbl 1423.22015
[62] Raghunathan, M. S., Discrete Subgroups of Lie Groups (1972), Springer · Zbl 0254.22005
[63] Raghunathan, M. S.; Ramanathan, A., Principal bundles on the affine line. Proc. Indian Acad. Sci. Math. Sci., 2-3, 137-145 (1984) · Zbl 0587.14007
[64] Rapinchuk, A. S., Towards the eigenvalue rigidity of Zariski-dense subgroups, 247-269 · Zbl 1373.20063
[65] Rapinchuk, A. S.; Rapinchuk, I. A., On division algebras having the same maximal subfields. Manuscr. Math., 273-293 (2010) · Zbl 1205.16015
[66] Rapinchuk, A. S.; Rapinchuk, I. A., Linear algebraic groups with good reduction. Res. Math. Sci., 3 (2020), 66pp. · Zbl 1466.20032
[67] Rapinchuk, A. S.; Rapinchuk, I. A., Some finiteness results for algebraic groups and unramified cohomology over higher-dimensional fields. J. Number Theory, 228-260 (2022) · Zbl 1489.11059
[68] Rapinchuk, A. S.; Rapinchuk, I. A., Properness of the global-to-local map for algebraic groups with toric connected component and other finiteness properties. Math. Res. Lett., 3, 913-943 (2023) · Zbl 1537.11050
[69] Rapinchuk, I., Residue maps, Azumaya algebras, and buildings · Zbl 07854090
[70] I. Rapinchuk, Finiteness results for the unramified cohomology of conics and applications, in preparation.
[71] Reid, A., Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds. Duke Math. J., 215-228 (1992) · Zbl 0776.58040
[72] Rost, M., A (mod 3) invariant for exceptional Jordan algebras. C. R. Acad. Sci. Paris, Ser. I, 823-827 (1991) · Zbl 0756.17014
[73] Saltman, D., Norm polynomials and algebras. J. Algebra, 333-345 (1980) · Zbl 0426.16007
[74] Saltman, D., Lectures on Division Algebras. CBMS Regional Conference Series in Mathematics (1999), AMS · Zbl 0934.16013
[75] Scott, L., Integral equivalence of permutation representations, 262-274 · Zbl 0828.20004
[76] Serre, J.-P., Algebraic Groups and Class Fields. GTM (1988), Springer · Zbl 0703.14001
[77] Serre, J.-P., Galois Cohomology (1997), Springer · Zbl 0902.12004
[78] Springer, T. A., The classification of reduced exceptional simple Jordan algebras. Indag. Math., 414-422 (1960) · Zbl 0098.02901
[79] Tits, J., Classification of algebraic semisimple groups, 33-62 · Zbl 0238.20052
[80] Vinberg, E. B., Rings of definition of dense subgroups of semisimple linear groups. Izv. Akad. Nauk SSSR, Ser. Math., 45-55 (1971) · Zbl 0252.20043
[81] Vishik, A., Integral Motives of Quadrics (1998), Max Planck Institute für Mathematik: Max Planck Institute für Mathematik Bonn, 82 pp.
[82] Vishik, A., Motives of quadrics with applications to the theory of quadratic forms, 25-101 · Zbl 1047.11033
[83] Voskresenskiī, V. E., Algebraic Groups and Their Birational Invariants (1998), AMS · Zbl 0974.14034
[84] Weisfeiler, B., Semisimple algebraic groups which are split over a quadratic extension. Math. USSR, Izv., 1, 57-72 (1971) · Zbl 0252.20035
[85] Weisfeiler, B., Strong approximation for Zariski-dense subgroups of semi-simple algebraic groups. Ann. Math., 2, 271-315 (1984) · Zbl 0568.14025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.