×

Critical points approaches to a nonlocal elliptic problem driven by \(p(x)\)-biharmonic operator. (English) Zbl 1484.35179

Authors’ abstract: Differential equations with variable exponent arise from the nonlinear elasticity theory and the theory of electrorheological fluids. We study the existence of at least three weak solutions for the nonlocal elliptic problems driven by \(p(x)\)-biharmonic operator. Our technical approach is based on variational methods. Some applications illustrate the obtained results. We also provide an example in order to illustrate our main abstract results. We extend and improve some recent results.

MSC:

35J40 Boundary value problems for higher-order elliptic equations
35J60 Nonlinear elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
Full Text: DOI

References:

[1] S. N. Antontsev and S. I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions, Nonlinear Anal. 60 (2005), no. 3, 515-545. · Zbl 1066.35045
[2] G. Bonanno and P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differential Equations 244 (2008), no. 12, 3031-3059. · Zbl 1149.49007
[3] G. Bonanno and G. D’Aguì, Multiplicity results for a perturbed elliptic Neumann problem, Abstr. Appl. Anal. 2010 (2010), Article ID 564363. · Zbl 1207.35118
[4] G. Bonanno and S. A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), no. 1, 1-10. · Zbl 1194.58008
[5] G. D’Aguì, S. Heidarkhani and G. Molica Bisci, Multiple solutions for a perturbed mixed boundary value problem involving the one-dimensional 𝑝-Laplacian, Electron. J. Qual. Theory Differ. Equ. 2013 (2013), Paper No. 24. · Zbl 1340.34078
[6] G. Dai and J. Wei, Infinitely many non-negative solutions for a p(x)-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal. 73 (2010), no. 10, 3420-3430. · Zbl 1201.35181
[7] X. Fan and C. Ji, Existence of infinitely many solutions for a Neumann problem involving the p(x)-Laplacian, J. Math. Anal. Appl. 334 (2007), no. 1, 248-260. · Zbl 1157.35040
[8] X. Fan and D. Zhao, On the spaces L^{p(x)}(\Omega) and W^{m,p(x)}(\Omega), J. Math. Anal. Appl. 263 (2001), no. 2, 424-446. · Zbl 1028.46041
[9] J. R. Graef, S. Heidarkhani and L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results Math. 63 (2013), no. 3-4, 877-889. · Zbl 1275.35108
[10] M. K. Hamdani, A. Harrabi, F. Mtiri and D. D. Repovš, Existence and multiplicity results for a new p(x)-Kirchhoff problem, Nonlinear Anal. 190 (2020), Article ID 111598. · Zbl 1433.35093
[11] S. Heidarkhani, G. A. Afrouzi, M. Ferrara and S. Moradi, Variational approaches to impulsive elastic beam equations of Kirchhoff type, Complex Var. Elliptic Equ. 61 (2016), no. 7, 931-968. · Zbl 1354.34054
[12] S. Heidarkhani, G. A. Afrouzi, S. Moradi and G. Caristi, A variational approach for solving p(x)-biharmonic equations with Navier boundary conditions, Electron. J. Differential Equations 2017 (2017), Paper No. 25. · Zbl 1381.35036
[13] S. Heidarkhani, G. A. Afrouzi, S. Moradi, G. Caristi and B. Ge, Existence of one weak solution for p(x)-biharmonic equations with Navier boundary conditions, Z. Angew. Math. Phys. 67 (2016), no. 3, Article ID 73. · Zbl 1353.35153
[14] S. Heidarkhani, A. L. A. De Araujo, G. A. Afrouzi and S. Moradi, Multiple solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Math. Nachr. 291 (2018), no. 2-3, 326-342. · Zbl 1390.35083
[15] S. Heidarkhani, A. L. A. De Araujo, G. A. Afrouzi and S. Moradi, Existence of three weak solutions for Kirchhoff-type problems with variable exponent and nonhomogeneous Neumann conditions, Fixed Point Theory 21 (2020), no. 2, 525-547. · Zbl 1455.35091
[16] S. Heidarkhani, M. Ferrara, A. Salari and G. Caristi, Multiplicity results for p(x)-biharmonic equations with Navier boundary conditions, Complex Var. Elliptic Equ. 61 (2016), no. 11, 1494-1516. · Zbl 1347.35104
[17] S. Heidarkhani, S. Moradi and S. A. Tersian, Three solutions for second-order boundary-value problems with variable exponents, Electron. J. Qual. Theory Differ. Equ. 2018 (2018), Paper No. 33. · Zbl 1413.34098
[18] E. M. Hssini, M. Massar and N. Tsouli, Existence and multiplicity of solutions for a p(x)-Kirchhoff type problems, Bol. Soc. Parana. Mat. (3) 33 (2015), no. 2, 201-215. · Zbl 1412.35004
[19] L. Kong, Multiple solutions for fourth order elliptic problems with p(x)-biharmonic operators, Opuscula Math. 36 (2016), no. 2, 253-264. · Zbl 1339.35130
[20] A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev. 32 (1990), no. 4, 537-578. · Zbl 0725.73057
[21] F.-F. Liao, S. Heidarkhani and S. Moradi, Multiple solutions for nonlocal elliptic problems driven by p(x)-biharmonic operator, AIMS Math. 6 (2021), no. 4, 4156-4172. · Zbl 1525.35091
[22] M. Massar, E. M. Hssini, N. Tsouli and M. Talbi, Infinitely many solutions for a fourth-order Kirchhoff type elliptic problem, J. Math. Comput. Sci. 8 (2014), 33-51.
[23] Q. Miao, Multiple solutions for nonlocal elliptic systems involving p(x)-Biharmonic operator, Mathematics 7 (2019), no. 8, Paper No. 756.
[24] M. Mihăilescu, Existence and multiplicity of solutions for a Neumann problem involving the p(x)-Laplace operator, Nonlinear Anal. 67 (2007), no. 5, 1419-1425. · Zbl 1163.35381
[25] G. Molica Bisci and V. D. Rădulescu, Applications of local linking to nonlocal Neumann problems, Commun. Contemp. Math. 17 (2015), no. 1, Article ID 1450001. · Zbl 1318.35019
[26] B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optim. 46 (2010), no. 4, 543-549. · Zbl 1192.49007
[27] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math. 1748, Springer, Berlin, 2000. · Zbl 0968.76531
[28] J. Simon, Régularité de la solution d’une équation non linéaire dans \(\mathbf{R}}^{N\), Journées d’Analyse Non Linéaire (Besançon 1977), Lecture Notes in Math. 665, Springer, Berlin (1978), 205-227. · Zbl 0402.35017
[29] L. Vilasi, Eigenvalue estimates for stationary p(x)-Kirchhoff problems, Electron. J. Differential Equations 2016 (2016), Paper No. 186. · Zbl 1383.35071
[30] H. Yin and Y. Liu, Existence of three solutions for a Navier boundary value problem involving the p(x)-biharmonic, Bull. Korean Math. Soc. 50 (2013), no. 6, 1817-1826. · Zbl 1283.35050
[31] H. Yin and M. Xu, Existence of three solutions for a Navier boundary value problem involving the p(x)-biharmonic operator, Ann. Polon. Math. 109 (2013), no. 1, 47-58. · Zbl 1288.35247
[32] A. Zang and Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces, Nonlinear Anal. 69 (2008), no. 10, 3629-3636. · Zbl 1153.26312
[33] E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B, Springer, New York, 1990. · Zbl 0684.47029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.