×

A finite element implementation of the isotropic exponentiated Hencky-logarithmic model and simulation of the eversion of elastic tubes. (English) Zbl 1459.74179

Summary: We investigate a finite element formulation of the exponentiated Hencky-logarithmic model whose strain energy function is given by \[ W_{\mathrm{eH}}(F) = \frac{\mu}{k}\, e^{k ||\mathrm{dev}_n \log U| |^2} + \frac{\kappa}{2 \hat{k}}\, e^{\hat k [\mathrm{tr} (\log U)]^2}, \] where \(\mu >0\) is the (infinitesimal) shear modulus, \(\kappa >0\) is the (infinitesimal) bulk modulus, \(k\) and \(\hat{k}\) are additional dimensionless material parameters, \(U=\sqrt{{F^T}{F}}\) is the right stretch tensor corresponding to the deformation gradient \(F\), \(\log \) denotes the principal matrix logarithm on the set of positive definite symmetric matrices, \(\mathrm{dev}_n X = X-\frac{\mathrm{tr}X}{n}1\) and \(|| X | | = \sqrt{\mathrm{ tr}X^TX}\) are the deviatoric part and the Frobenius matrix norm of an \(n\times n\)-matrix \(X\), respectively, and \(\mathrm{tr}\) denotes the trace operator. To do so, the equivalent different forms of the constitutive equation are recast in terms of the principal logarithmic stretches by use of the spectral decomposition together with the undergoing properties. We show the capability of our approach with a number of relevant examples, including the challenging “eversion of elastic tubes” problem.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74B15 Equations linearized about a deformed state (small deformations superposed on large)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

References:

[1] Anand, L., On H. hencky’s approximate strain energy function for moderate deformations, J Appl Mech, 46, 78-82, (1979) · Zbl 0405.73032 · doi:10.1115/1.3424532
[2] Armero, F.; Stein, E. (ed.); Borst, R. (ed.); Hughes, T. (ed.), Elastoplastic and viscoplastic deformations in solids and structures, 227-266, (2004), London
[3] Bažant ZP, Vorel J (2012) Objective stress rates in finite strain of inelastic solid and their energy consistency. Technical report, McCormick School of Engineering and Applied Science, Northwestern University
[4] Bažant ZP, Gattu M, Vorel J (2012) Work conjugacy error in commercial finite-element codes: its magnitude and how to compensate for it. Proc R Soc Lond A Math Phys Eng Sci 468:3047-3058 · Zbl 1371.74256
[5] Chen, YC; Haughton, D., Existence of exact solutions for the eversion of elastic cylinders, J Elast, 49, 79-88, (1997) · Zbl 0903.73013 · doi:10.1023/A:1007431400648
[6] Ehlers, W.; Eipper, G., The simple tension problem at large volumetric strains computed from finite hyperelastic material laws, Acta Mech, 130, 17-27, (1998) · Zbl 0904.73014 · doi:10.1007/BF01187040
[7] Flory, PJ, Thermodynamic relations for high elastic materials, Trans Faraday Soc, 57, 829-838, (1961) · doi:10.1039/tf9615700829
[8] Gent, AN, A new constitutive relation for rubber, Rubber Chem Technol, 69, 59-61, (1996) · doi:10.5254/1.3538357
[9] Gent, AN; Rivlin, RS, Experiments on the mechanics of rubber I: eversion of a tube, Proc Phys Soc B, 65, 118-121, (1952) · doi:10.1088/0370-1301/65/2/305
[10] Ghiba, ID; Neff, P.; Martin, RJ, An ellipticity domain for the distortional hencky logarithmic strain energy, Proc R Soc Lond A Math Phys Sci, 471, 2184, (2015) · Zbl 1371.74042 · doi:10.1098/rspa.2015.0510
[11] Ghiba, ID; Neff, P.; Šilhavỳ, M., The exponentiated hencky-logarithmic strain energy. improvement of planar polyconvexity, Int J Non-Linear Mech, 71, 48-51, (2015) · doi:10.1016/j.ijnonlinmec.2015.01.009
[12] Hencky H (1928) Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen. Zeitschrift für technische Physik 9:215-220 . www.uni-due.de/imperia/md/content/mathematik/ag_neff/hencky1928.pdf · JFM 54.0851.03
[13] Hencky H (1929) Welche Umstände bedingen die Verfestigung bei der bildsamen Verformung von festen isotropen Körpern? Zeitschrift für Physik 55:145-155. www.uni-due.de/imperia/md/content/mathematik/ag_neff/hencky1929.pdf · JFM 55.1107.01
[14] Hencky H (1933) The elastic behavior of vulcanized rubber. Rubber Chem Technol 6(2):217-224 . https://www.uni-due.de/imperia/md/content/mathematik/ag_neff/hencky_vulcanized_rubber.pdf
[15] Holzapfel GA (2000) Nonlinear solid mechanics. A continuum approach for engineering. Wiley, Chichester · Zbl 0980.74001
[16] Hughes TJR (1987) The finite element method. Prentice-Hall, Englewood-Cliffs · Zbl 0634.73056
[17] Ji, W.; Waas, AM; Bažant, ZP, On the importance of work-conjugacy and objective stress rates in finite deformation incremental finite element analysis, J Appl Mech, 80, 041-124, (2013) · doi:10.1115/1.4007828
[18] Jog, CS; Patil, KD, Conditions for the onset of elastic and material instabilities in hyperelastic materials, Arch Appl Mech, 83, 661-684, (2013) · Zbl 1293.74121 · doi:10.1007/s00419-012-0711-8
[19] Jones, DF; Treloar, LRG, The properties of rubber in pure homogeneous strain, J Phys D Appl Phys, 8, 1285, (1975) · doi:10.1088/0022-3727/8/11/007
[20] Liang, X.; Tao, F.; Cai, S., Creasing of an everted elastomer tube, Soft Matter, 12, 7726-7730, (2016) · doi:10.1039/C6SM01381C
[21] Martin RJ, Neff P (2016) Minimal geodesics on \({\rm GL}\mathit{(n)}\) for left-invariant, right-\({\rm O}(n)\)-invariantriemannian metrics. J Geom Mech 8(3):323-357 . arXiv:1409.7849 · Zbl 1366.53028
[22] Miehe, C., Aspects of the formulation and finite element implementation of large strain isotropic elasticity, Int J Numer Methods Eng, 37, 1981-2004, (1994) · Zbl 0804.73067 · doi:10.1002/nme.1620371202
[23] Mihai LA, Neff P (2017) Hyperelastic bodies under homogeneous Cauchy stress induced by non-homogeneous finite deformations. Int J Non-Linear Mech 89:93-100. arXiv:1608.05040
[24] Mihai LA, Neff P (2017) Hyperelastic bodies under homogeneous Cauchy stress induced by three-dimensional non-homogeneous deformations. Math Mech Solids. arXiv:1611.01772 · Zbl 1395.74013
[25] Montella, G.; Govindjee, S.; Neff, P., The exponentiated hencky strain energy in modeling tire derived material for moderately large deformations, J Eng Mater Technol, 138, 031,008-1-031,008-12, (2016) · doi:10.1115/1.4032749
[26] Nedjar, B., Frameworks for finite strain viscoelastic-plasticity based on multiplicative decompositions. part II: computational aspects, Comput Methods Appl Mech Eng, 191, 1563-1593, (2002) · Zbl 1141.74318 · doi:10.1016/S0045-7825(01)00336-X
[27] Nedjar, B., An anisotropic viscoelastic fibre-matrix model at finite strains: continuum formulation and computational aspects, Comput Methods Appl Mech Eng, 196, 1745-1756, (2007) · Zbl 1173.74322 · doi:10.1016/j.cma.2006.09.009
[28] Nedjar, B., On a continuum thermodynamics formulation and computational aspects of finite growth in soft tissues, Int J Numer Methods Biomed Eng, 27, 1850-1866, (2011) · Zbl 1242.92010 · doi:10.1002/cnm.1448
[29] Nedjar, B., On constitutive models of finite elasticity with possible zero apparent poisson’s ratio, Int J Solids Struct, 91, 72-77, (2016) · doi:10.1016/j.ijsolstr.2016.04.026
[30] Nedjar, B., A coupled BEM-FEM method for finite strain magneto-elastic boundary-value problems, Comput Mech, 59, 795-807, (2017) · Zbl 1398.74443 · doi:10.1007/s00466-016-1370-3
[31] Neff P (2000) Mathematische analyse multiplikativer Viskoplastizität. Ph.D. Thesis, Technische Universität Darmstadt. Shaker Verlag, Aachen. http://www.uni-due.de/ hm0014/Download_files/neffdiss.ps · Zbl 0970.74002
[32] Neff P, Eidel B, Martin RJ (2014) The axiomatic deduction of the quadratic Hencky strain energy by Heinrich Hencky. arXiv:1402.4027
[33] Neff P, Eidel B, Martin RJ (2016) Geometry of logarithmic strain measures in solid mechanics. Arch Ration Mech Anal 222(2):507-572. https://doi.org/10.1007/s00205-016-1007-x. arXiv:1505.02203 · Zbl 1348.74039
[34] Neff, P.; Ghiba, ID, The exponentiated hencky-logarithmic strain energy. part III: coupling with idealized isotropic finite strain plasticity, Contin Mech Thermodyn, 28, 477-487, (2016) · Zbl 1348.74053 · doi:10.1007/s00161-015-0449-y
[35] Neff P, Ghiba ID (2016) Loss of ellipticity for non-coaxial plastic deformations in additive logarithmic finite strain plasticity. Int J Non-Linear Mech 81:122-128. arXiv:1410.2819
[36] Neff, P.; Ghiba, ID; Lankeit, J., The exponentiated hencky-logarithmic strain energy. part I: constitutive issues and rank-one convexity, J Elast, 121, 143-234, (2015) · Zbl 1325.74028 · doi:10.1007/s10659-015-9524-7
[37] Neff, P.; Lankeit, J.; Ghiba, ID; Martin, RJ; Steigmann, DJ, The exponentiated hencky-logarithmic strain energy. part II: coercivity, planar polyconvexity and existence of minimizers, Z Angew Math Phys, 66, 1671-1693, (2015) · Zbl 1320.74022 · doi:10.1007/s00033-015-0495-0
[38] Neff P, Mihai LA (2017) Injectivity of the Cauchy-stress tensor along rank-one connected lines under strict rank-one convexity condition. J Elast 127(2):309-315. arXiv:1608.05247 · Zbl 1368.74015
[39] Ogden RW (1997) Non-linear elastic deformations. Dover, New York
[40] Plešek, J.; Kruisová, A., Formulation, validation and numerical procedures for hencky’s elasticity model, Comput Struct, 84, 1141-1150, (2006) · doi:10.1016/j.compstruc.2006.01.005
[41] Reese, S.; Govindjee, S., A theory of finite viscoelasticity and numerical aspects, Int J Solids Struct, 35, 3455-3482, (1998) · Zbl 0918.73028 · doi:10.1016/S0020-7683(97)00217-5
[42] Richter H (1948) Das isotrope Elastizitätsgesetz. Z Angew Math Mech 28(7/8):205-209. https://www.uni-due.de/imperia/md/content/mathematik/ag_neff/richter_isotrop_log.pdf · Zbl 0033.22402
[43] Röntgen, WC, Über das verhältniss der quercontraction zur Längendilatation bei kautschuk, Ann Phys, 235, 601-616, (1876) · doi:10.1002/andp.18762351209
[44] Schröder J, von Hoegen M, Neff P (2017) The exponentiated Hencky energy: Anisotropic extension and biomechanical applications. to appear in Comput Mech. arXiv:1702.00394
[45] Simo, JC; Ciarlet, P. (ed.); Lions, J. (ed.), Numerical analysis and simulation of plasticity, No. VI, 183-499, (1998), Amsterdam · Zbl 0930.74001
[46] Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York · Zbl 0934.74003
[47] Truesdell, C., Mechanical foundations of elasticity and fluid dynamics, J Ration Mech Anal, 1, 125-300, (1952) · Zbl 0046.17306
[48] Truesdell, C., Some challenges offered to analysis by rational thermomechanics: three lectures for the international symposium on continuum mechanics and partial differential equations, N-Holl Math Stud, 30, 495-603, (1978) · Zbl 0409.73097 · doi:10.1016/S0304-0208(08)70881-8
[49] Valanis, KC; Landel, RF, The strain-energy function of a hyperelastic material in terms of the extension ratios, J Appl Phys, 38, 2997-3002, (1967) · doi:10.1063/1.1710039
[50] Vallée, C., Lois de comportement élastique isotropes en grandes déformations, Int J Eng Sci, 16, 451-457, (1978) · Zbl 0381.73021 · doi:10.1016/0020-7225(78)90078-2
[51] Wegner JL, Haddow JB (2009) Elements of continuum mechanics and thermodynamics. Cambridge University Press, Cambridge · Zbl 1165.74003 · doi:10.1017/CBO9780511805790
[52] Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin, Heidelberg · Zbl 1153.74001
[53] Zienkiewicz OC, Taylor RL (2000) The finite element method, vol 1, 5th edn. Butterworth-Heinemann, Oxford · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.