×

Linear approximation method for solving split inverse problems and its applications. (English) Zbl 1509.47092

Summary: We study the problem of finding a common element that solves the multiple-sets feasibility and equilibrium problems in real Hilbert spaces. We consider a general setting in which the involved sets are represented as level sets of given convex functions, and propose a constructible linear approximation scheme that involves the subgradient of the associated convex functions. Strong convergence of the proposed scheme is established under mild assumptions and several synthetic and practical numerical illustrations demonstrate the validity and advantages of our method compared with related schemes in the literature.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
65K05 Numerical mathematical programming methods
90C25 Convex programming
Full Text: DOI

References:

[1] Censor, Y.; Elfving, T.; Kopf, N.; Bortfeld, T., The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Probl., 21, 6, 2071-2084 (2005) · Zbl 1089.65046 · doi:10.1088/0266-5611/21/6/017
[2] Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A., A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol.., 51, 10, 2353-2365 (2006) · doi:10.1088/0031-9155/51/10/001
[3] López, G, Martin, V, Xu, H, et al.: Iterative algorithms for the multiple-sets split feasibility problem. Biomed. Math.: Promising Directions in Imaging, Therapy Planning and Inverse Problems 243-279 (2009)
[4] López, G.; Martín-Márquez, V.; Xu, HK, Perturbation techniques for nonexpansive mappings with applications, Nonlinear Anal. Real World Appl., 10, 4, 2369-2383 (2009) · Zbl 1163.47306 · doi:10.1016/j.nonrwa.2008.04.020
[5] López, G.; Martín-Márquez, V.; Wang, F.; Xu, HK, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Probl., 28, 8, 085004 (2012) · Zbl 1262.90193 · doi:10.1088/0266-5611/28/8/085004
[6] Censor, Y.; Elfving, T., A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8, 2, 221-239 (1994) · Zbl 0828.65065 · doi:10.1007/BF02142692
[7] Censor, Y, Segal, A.: Iterative projection methods in biomedical inverse problems. Mathematical methods in biomedical imaging and intensity-modulated radiation therapy (IMRT), vol. 10, pp. 65-96 (2008)
[8] Wang, J.; Hu, Y.; Li, C.; Yao, JC, Linear convergence of CQ algorithms and applications in gene regulatory network inference, Inverse Probl., 33, 5, 055017 (2017) · Zbl 1368.65080 · doi:10.1088/1361-6420/aa6699
[9] Ansari, QH, Rehan, A: Split feasibility and fixed point problems. In: Nonlinear Analysis. Available from: doi:10.1007/978-81-322-1883-8∖_9, pp 281-322. Springer, India (2014) · Zbl 1318.49012
[10] Xu, HK, Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces, Inverse Probl., 26, 10, 105018 (2010) · Zbl 1213.65085 · doi:10.1088/0266-5611/26/10/105018
[11] Byrne, C., A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20, 1, 103-120 (2003) · Zbl 1051.65067 · doi:10.1088/0266-5611/20/1/006
[12] Takahashi, W., The split feasibility problem and the shrinking projection method in Banach spaces, J. Nonlinear Convex Anal., 16, 7, 1449-1459 (2015) · Zbl 1343.47074
[13] Xu, HK, A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem, Inverse Probl., 22, 6, 2021-2034 (2006) · Zbl 1126.47057 · doi:10.1088/0266-5611/22/6/007
[14] Yang, Q., The relaxed CQ algorithm solving the split feasibility problem, Inverse Probl., 20, 4, 1261-1266 (2004) · Zbl 1066.65047 · doi:10.1088/0266-5611/20/4/014
[15] Gibali, A.; Mai, DT; Vinh, NT, A new relaxed CQ algorithm for solving split feasibility problems in Hilbert spaces and its applications, J. Ind. Manag. Optim.., 15, 2, 963-984 (2019) · Zbl 1438.65124 · doi:10.3934/jimo.2018080
[16] Sahu, D R, Cho, Y J, Dong, Q L, Kashyap, M R, Li, X. H.: Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces. Numer. Algorithms. Available from: doi:10.1007/s11075-020-00999-2 (2020) · Zbl 1471.65044
[17] Shehu, Y, Gibali, A.: New inertial relaxed method for solving split feasibilities. Optim. Lett. Available from: doi:10.1007/s11590-020-01603-1 (2020) · Zbl 1475.90061
[18] Liou, Y C, Zhu, L J, Yao, Y, Chyu, C C: Algorithmic and analytical approaches to the split feasibility problems and fixed point roblems. Taiwan. J. Math. 17(5). Available from: doi:10.11650/tjm.17.2013.3175 (2013) · Zbl 1300.47107
[19] Byrne, C., Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18, 2, 441-453 (2002) · Zbl 0996.65048 · doi:10.1088/0266-5611/18/2/310
[20] Dong, QL; Yao, Y.; He, S., Weak convergence theorems of the modified relaxed projection algorithms for the split feasibility problem in Hilbert spaces, Optim. Lett., 8, 3, 1031-1046 (2013) · Zbl 1320.90103 · doi:10.1007/s11590-013-0619-4
[21] He, S, Zhao, Z.: Strong convergence of a relaxed CQ algorithm for the split feasibility problem. J. Inequal. Appl. 2013(1). Available from: doi:10.1186/1029-242x-2013-197 (2013) · Zbl 1282.90125
[22] Yao, Y.; Postolache, M.; Liou, YC, Strong convergence of a self-adaptive method for the split feasibility problem, Fixed Point Theory Appl., 2013, 1, 201 (2013) · Zbl 1403.65027 · doi:10.1186/1687-1812-2013-201
[23] Dang, Y.; Sun, J.; Xu, H., Inertial accelerated algorithms for solving a split feasibility problem, J. Ind. Manag. Optim., 13, 3, 1383-1394 (2017) · Zbl 1362.65061 · doi:10.3934/jimo.2016078
[24] Gibali, A.; Liu, LW; Tang, YC, Note on the modified relaxation CQ algorithm for the split feasibility problem, Optim. Lett., 12, 4, 817-830 (2017) · Zbl 1423.90179 · doi:10.1007/s11590-017-1148-3
[25] Shehu, Y, Vuong, P T, Cholamjiak, P.: A self-adaptive projection method with an inertial technique for split feasibility problems in Banach spaces with applications to image restoration problems. J. Fixed Point Theory Appl. 21(2). Available from: doi:10.1007/s11784-019-0684-0 (2019) · Zbl 1415.47010
[26] Blum, E., From optimization and variational inequalities to equilibrium problems, Mathematics Student, 63, 123-145 (1994) · Zbl 0888.49007
[27] Facchinei, F.; Pang, JS, Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer Series in Operations Research (2003), New York: Springer, New York · Zbl 1062.90002
[28] Konnov, IV, Equilibrium Models and Variational Inequalities, vol. 210 of Mathematics in Science and Engineering (2007), Amsterdam: Elsevier B. V., Amsterdam · Zbl 1140.91056
[29] Muu, LD; Oettli, W., Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal., 18, 12, 1159-1166 (1992) · Zbl 0773.90092 · doi:10.1016/0362-546X(92)90159-C
[30] Chang, X, Liu, S, Deng, Z, Li, S.: An inertial subgradient extragradient algorithm with adaptive stepsizes for variational inequality problems. Optim. Methods Softw. 1-20 (2021)
[31] Ceng, LC; Petruşel, A.; Qin, X.; Yao, JC, Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints, Optimization, 70, 5-6, 1337-1358 (2021) · Zbl 1486.47105 · doi:10.1080/02331934.2020.1858832
[32] Bnouhachem, A.; Al-Homidan, S.; Ansari, Q., An iterative method for common solutions of equilibrium problems and hierarchical fixed point problems, Fixed Point Theory Appl., 2014, 1, 194 (2014) · Zbl 1382.49006 · doi:10.1186/1687-1812-2014-194
[33] Flåm, SD; Antipin, AS, Equilibrium programming using proximal-like algorithms, Math. Program., 78, 1, 29-41 (1996) · Zbl 0890.90150 · doi:10.1007/BF02614504
[34] Moudafi, A., Second-order differential proximal methods for equilibrium problems, J. Inequalities Appl. Math., 4, 1, 1-7 (2003) · Zbl 1175.90413
[35] Shehu, Y.; Iyiola, OS; Thong, DV; Van, NTC, An inertial subgradient extragradient algorithm extended to pseudomonotone equilibrium problems, Math. Methods Oper. Res., 93, 2, 213-242 (2021) · Zbl 1471.90152 · doi:10.1007/s00186-020-00730-w
[36] Sombut, K.; Plubtieng, S., Weak convergence theorem for finding fixed points and solution of split feasibility and systems of equilibrium problems, Abstr. Appl. Anal., 2013, 1-8 (2013) · Zbl 1263.65063 · doi:10.1155/2013/430409
[37] Qin, X.; Wang, L., A fixed point method for solving a split feasibility problem in Hilbert spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 113, 1, 315-325 (2017) · Zbl 1440.47053 · doi:10.1007/s13398-017-0476-6
[38] Shehu, Y.; Ogbuisi, FU, An iterative method for solving split monotone variational inclusion and fixed point problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 110, 2, 503-518 (2015) · Zbl 1382.47031 · doi:10.1007/s13398-015-0245-3
[39] Tang, Y, Gibali, A.: Several inertial methods for solving split convex feasibilities and related problems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114(3). Available from: doi:10.1007/s13398-020-00857-9 (2020) · Zbl 1505.47092
[40] Tang, Y, Zhu, C, Yu, H.: Iterative methods for solving the multiple-sets split feasibility problem with splitting self-adaptive step size. Fixed Point Theory Appl. 2015(1). Available from: doi:10.1186/s13663-015-0430-2 (2015) · Zbl 1338.90309
[41] Bauschke, HH; Combettes, PL, Convex Analysis and Monotone Operator Theory in Hilbert Spaces (2011), New York: Springer, New York · Zbl 1218.47001 · doi:10.1007/978-1-4419-9467-7
[42] Goebel, K.; Simeon, R., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings (1984), New York: Dekker, New York · Zbl 0537.46001
[43] Goebel, K.; Kirk, WA, Topics in Metric Fixed Point Theory (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0708.47031 · doi:10.1017/CBO9780511526152
[44] Aubin, J. P.: Optima and Equilibria: an Introduction to Nonlinear Analysis, vol. 140. Springer Science & Business Media (2013)
[45] Takahashi, S.; Takahashi, W., Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331, 1, 506-515 (2007) · Zbl 1122.47056 · doi:10.1016/j.jmaa.2006.08.036
[46] Suzuki, T., Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., 2005, 1, 685918 (2005) · Zbl 1123.47308 · doi:10.1155/FPTA.2005.103
[47] Xu, HK, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66, 1, 240-256 (2002) · Zbl 1013.47032 · doi:10.1112/S0024610702003332
[48] Maingé, PE, New approach to solving a system of variational inequalities and hierarchical problems, J. Optim. Theory Appl., 138, 3, 459-477 (2008) · Zbl 1159.49016 · doi:10.1007/s10957-008-9433-z
[49] Dai, YH, Fast algorithms for projection on an ellipsoid, SIAM J. Optim., 16, 4, 986-1006 (2006) · Zbl 1105.65064 · doi:10.1137/040613305
[50] Yu, H.; Zhan, W.; Wang, F., The ball-relaxed CQ algorithms for the split feasibility problem, Optimization, 67, 10, 1687-1699 (2018) · Zbl 1490.65106 · doi:10.1080/02331934.2018.1485677
[51] He, S.; Zhao, Z.; Luo, B., A relaxed self-adaptive CQ algorithm for the multiple-sets split feasibility problem, Optimization, 64, 9, 1907-1918 (2015) · Zbl 1337.47089 · doi:10.1080/02331934.2014.895898
[52] Suantai, S.; Pholasa, N.; Cholamjiak, P., Relaxed CQ algorithms involving the inertial technique for multiple-sets split feasibility problems, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 113, 2, 1081-1099 (2019) · Zbl 1461.47035 · doi:10.1007/s13398-018-0535-7
[53] Cegielski, A., Iterative Methods for Fixed Point Problems in Hilbert Spaces, vol. 2057 of Lecture Notes in Mathematics (2012), Heidelberg: Springer, Heidelberg · Zbl 1256.47043
[54] Kesornprom, S.; Pholasa, N.; Cholamjiak, P., On the convergence analysis of the gradient-CQ algorithms for the split feasibility problem, Numer. Algorithms, 84, 3, 997-1017 (2020) · Zbl 1459.65073 · doi:10.1007/s11075-019-00790-y
[55] Reich, S.; Truong, MT; Mai, TNH, The split feasibility problem with multiple output sets in Hilbert spaces, Optim Lett., 14, 8, 2335-2353 (2020) · Zbl 1460.90201 · doi:10.1007/s11590-020-01555-6
[56] Suantai, S.; Eiamniran, N.; Pholasa, N.; Cholamjiak, P., Three-step projective methods for solving the split feasibility problems, Mathematics, 7, 8, 712 (2019) · doi:10.3390/math7080712
[57] Wang, F., Polyak’s gradient method for split feasibility problem constrained by level sets, Numer. Algorithms, 77, 3, 925-938 (2018) · Zbl 1486.65054 · doi:10.1007/s11075-017-0347-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.