×

The quantum Loschmidt echo on flat tori. (English) Zbl 1459.35321

Summary: The quantum Loschmidt echo is a measurement of the sensitivity of a quantum system to perturbations of the Hamiltonian. In the case of the standard two-torus, we derive some explicit formulae for this quantity in the transition regime where it is expected to decay in the semiclassical limit. The expression involves both a two-microlocal defect measure of the initial data and the form of the perturbation. As an application, we exhibit a non-concentration criterium on the sequence of initial data under which one does not observe a macroscopic decay of the quantum Loschmidt echo. We also apply our results to several examples of physically relevant initial data such as coherent states and plane waves.

MSC:

35Q40 PDEs in connection with quantum mechanics
35Q41 Time-dependent Schrödinger equations and Dirac equations
58J40 Pseudodifferential and Fourier integral operators on manifolds
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] Anantharaman N, Fermanian-Kammerer C and Macià F 2015 Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal Wigner measures Am. J. Math.137 577-638 · Zbl 1319.35207 · doi:10.1353/ajm.2015.0020
[2] Anantharaman N and Léautaud M 2014 Sharp polynomial decay rates for the damped wave equation on the torus Anal. PDE7 159-214 · Zbl 1295.35075 · doi:10.2140/apde.2014.7.159
[3] Anantharaman N, Léautaud M and Macià F 2016 Wigner measures and observability for the Schrödinger equation on the disk Inventiones Math.206 485-599 · Zbl 1354.35125 · doi:10.1007/s00222-016-0658-4
[4] Anantharaman N and Macià F 2014 Semiclassical measures for the Schrödinger equation on the torus J. Eur. Math. Soc.16 1253-88 · Zbl 1298.42028 · doi:10.4171/JEMS/460
[5] Bolte J and Schwaibold T 2006 Stability of wave packet dynamics under perturbations Phys. Rev. E 73 026223 · doi:10.1103/PhysRevE.73.026223
[6] Canzani Y, Jakobson D and Toth J 2014 On the distribution of perturbations of propagated Schrödinger eigenfunctions J. Spectral Theory4 283-307 · Zbl 1296.35102 · doi:10.4171/JST/70
[7] Combescure M and Robert D 2007 A phase-space study of the quantum Loschmidt echo in the semiclassical limit Ann. Henri Poincaré8 91-108 · Zbl 1109.81051 · doi:10.1007/s00023-006-0301-9
[8] Dubertrand R and Goussev A 2014 Origin of the exponential decay of the Loschmidt echo in integrable systems Phys. Rev. E 89 022915 · doi:10.1103/PhysRevE.89.022915
[9] Eswarathasan S and Rivière G 2017 Perturbation of the semiclassical Schrödinger equation on negatively curved surfaces J. Inst. Math. Jussieu16 787-835 · Zbl 1379.37129 · doi:10.1017/S1474748015000262
[10] Eswarathasan S and Toth J 2012 Average pointwise bounds for deformations of Schrodinger eigenfunctions Ann. Henri Poincaré14 611-37 · Zbl 1263.81186 · doi:10.1007/s00023-012-0198-4
[11] Fermanian-Kammerer C 2000 Mesures semi-classiques 2-microlocales C. R. Acad. Sci., Paris I 331 515-8 · Zbl 0964.35009 · doi:10.1016/S0764-4442(00)01660-8
[12] Fermanian-Kammerer C and Gérard P 2002 Mesures semi-classiques et croisement de modes Bull. Soc. Math. France130 123-68 · Zbl 0996.35004 · doi:10.24033/bsmf.2416
[13] Gérard P 1991 Mesures semi-classiques et ondes de Bloch (Séminaire Équations aux dérivées partielles (Polytechnique) (1990-1991) Talk no. 16) pp 1-19 · Zbl 0739.35096
[14] Gorin T, Prosen T, Seligman T H and Zdinaric M 2006 Dynamics of Loschmidt echoes and fidelity decay Phys. Rep.435 33-156 · doi:10.1016/j.physrep.2006.09.003
[15] Goussev A, Jalabert R A, Pastawski H M and Wisniacki D 2012 Loschmidt echo Scholarpedia7 11687 · doi:10.4249/scholarpedia.11687
[16] Jacquod P and Petitjean C 2009 Decoherence, entanglement and irreversibility in quantum dynamical systems with few degrees of freedom Adv. Phys.58 67-196 · doi:10.1080/00018730902831009
[17] Macià F 2009 Semiclassical measures and the Schrödinger flow on Riemannian manifolds Nonlinearity22 1003-20 · Zbl 1166.81020 · doi:10.1088/0951-7715/22/5/005
[18] Macià F 2010 High-frequency propagation for the Schrödinger equation on the torus J. Funct. Anal.258 933-55 · Zbl 1180.35438 · doi:10.1016/j.jfa.2009.09.020
[19] Macià F and Rivière G 2016 Concentration and non concentration for the Schrödinger evolution on Zoll manifolds Commun. Math. Phys.345 1019-54 · Zbl 1348.58017 · doi:10.1007/s00220-015-2504-8
[20] Macià F and Rivière G 2018 Two-microlocal regularity of quasimodes on the torus Anal. PDE11 2111-36 · Zbl 1432.58028 · doi:10.2140/apde.2018.11.2111
[21] Miller L 1996 Propagation d’ondes semi-classiques à travers une interface et mesures two-microlocales PhD Thesis Ecole polytechnique, Palaiseau
[22] Nier F 1996 A semiclassical picture of quantum scattering Ann. Sci. ENS29 149-83 · Zbl 0858.35106
[23] Peres A 1984 Stability of quantum motion in chaotic and regular systems Phys. Rev. A 30 1610-5 · doi:10.1103/PhysRevA.30.1610
[24] Rivière G 2016 Long time dynamics of the perturbed Schrödinger equation on negatively curved surfaces Ann. Henri Poincaré17 1955-99 · Zbl 1344.81099 · doi:10.1007/s00023-016-0464-y
[25] Royer J 2010 Analyse haute fréquence de l’équation de Helmholtz dissipative PhD Thesis Université de Nantes (https://tel.archives-ouvertes.fr/tel-00578423)
[26] Ruzhansky M and Turunen V 2010 Pseudodifferential Operators and Symmetries (Basel: Birkhäuser) · Zbl 1193.35261 · doi:10.1007/978-3-7643-8514-9
[27] Zworski M 2012 Semiclassical Analysis(Graduate Studies in Mathematics vol 138) (Providence, RI: American Mathematical Society) · Zbl 1252.58001 · doi:10.1090/gsm/138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.