×

Is the full susceptibility of the square-lattice Ising model a differentially algebraic function? (English) Zbl 1360.82023

Summary: We study the class of non-holonomic power series with integer coefficients that reduce, modulo primes, or powers of primes, to algebraic functions. In particular we try to determine whether the susceptibility of the square-lattice Ising model belongs to this class, and more broadly whether the susceptibility is a solution of a differentially algebraic equation. Initial results on Tutte’s nonlinear ordinary differential equation (ODE) and other simple quadratic nonlinear ODEs suggest that a large set of differentially algebraic power series solutions with integer coefficients might reduce to algebraic functions modulo primes, or powers of primes. Since diagonals of rational functions are well-known to reduce, modulo primes, or powers of primes, to algebraic functions, a large subset of differentially algebraic power series with integer coefficients may be viewed as a natural ‘nonlinear’ generalisation of diagonals of rational functions. Here we give several examples of series with integer coefficients and non-zero radius of convergence that reduce to algebraic functions modulo (almost) every prime (or power of a prime). These examples satisfy differentially algebraic equations with the encoding polynomial occasionally possessing quite high degree (and thus difficult to identify even with long series). These examples shed important light on the very nature of such differentially algebraic series. Additionally, we have extended both the high- and low-temperature Ising square-lattice susceptibility series to 5043 coefficients. We find that even this long series is insufficient to determine whether it reduces to algebraic functions modulo 3, 5, etc. This negative result is in contrast to the comparatively easy confirmation that the corresponding series reduce to algebraic functions modulo powers of 2. Finally we show that even with 5043 terms we are unable to identify an underlying differentially algebraic equation for the susceptibility, ruling out a number of possible differentially algebraic forms.

MSC:

82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
34A09 Implicit ordinary differential equations, differential-algebraic equations

References:

[1] Onsager L 1944 Crystal statistics: I. A two-dimensional model with an order–disorder transition Phys. Rev.65 117–49 · Zbl 0060.46001
[2] Viswanathan G M 2015 The hypergeometric series for the partition function of the 2D Ising model J. Stat. Mech. P07004
[3] Yang C N 1952 The spontaneous magnetization of a two-dimensional Ising model Phys. Rev.85 808–16 · Zbl 0046.45304
[4] Wu T T, McCoy B M, Tracy C A and Barouch E 1976 Spin–spin correlation functions for the two-dimensional Ising model: exact theory in the scaling region Phys. Rev. B 13 316–74
[5] Orrick W P, Nickel B G, Guttmann A J and Perk J H H 2001 The susceptibility of the square lattice Ising model: new developments J. Stat. Phys.103 795–841 · Zbl 0999.82020
[6] Nickel B 1999 On the singularity structure of the 2D Ising susceptibility J. Phys. A: Math. Gen.32 3889–906 · Zbl 0936.82006
[7] Zenine N, Boukraa S, Hassani S and Maillard J-M 2004 The Fuchsian differential equation of the square-lattice Ising model {\(\chi\)} (3) susceptibility J. Phys. A: Math. Gen.37 9651–68 · Zbl 1073.82014
[8] Zenine N, Boukraa S, Hassani S and Maillard J-M 2005 Square lattice Ising model susceptibility: connection matrices and singular behavior of {\(\chi\)} (3) and {\(\chi\)} (4) J. Phys. A: Math. Gen.38 9439–74 · Zbl 1087.82006
[9] Boukraa S, Guttmann A J, Hassani S, Jensen I, Maillard J-M, Nickel B and Zenine N 2008 Experimental mathematics on the magnetic susceptibility of the square lattice Ising model J. Phys. A: Math. Theor.41 45520 · Zbl 1152.82305
[10] Nickel B, Jensen I, Boukraa S, Guttmann A J, Hassani S, Maillard J-M and Zenine N 2010 Square lattice Ising model {\(\chi\)} (5) ODE in exact arithmetics J. Phys. A: Math. Theor.42 195205 · Zbl 1196.82075
[11] Bostan A, Boukraa S, Guttmann A J, Hassani S, Jensen I, Maillard J-M and Zenine N 2009 High order Fuchsian equations for the square-lattice Ising model: {\(\chi\)} (5) J. Phys. A: Math. Theor.42 275209 · Zbl 1171.82005
[12] Boukraa S, Hassani S, Jensen I, Maillard J-M and Zenine N 2010 High order Fuchsian equations for the square lattice Ising model: {\(\chi\)} (6) J. Phys. A: Math. Theor.43 115201
[13] Chan Y-B, Guttmann A J, Nickel B G and Perk J H H 2011 The Ising susceptibility scaling function J. Stat. Phys.145 549–90 · Zbl 1231.82008
[14] Boukraa S, Hassani S, Maillard J-M, McCoy B M, Weil J-A and Zenine N 2006 Painlevé versus Fuchs J. Phys. A: Math. Gen.39 12245–63 · Zbl 1119.34069
[15] Guttmann A J and Maillard J-M 2015 Automata and the susceptibility of the square lattice Ising model modulo powers of primes J. Phys. A: Math. Theor.42 474001 · Zbl 1334.82009
[16] Pantone J GuessFunc: automatically forming conjectures about differentially algebraic power series (in preparation)
[17] Binmore K G 1969 Analytic functions with Hadamard gaps Bull. London Math. Soc.1 211–7 · Zbl 0209.10002
[18] Weiss M and Weiss G 1962/63 On the Picard property of lacunary power series Stud. Math.22 221–45
[19] Pommerenke C 1984 Some examples of power series with non-Hadamard gaps Math. Z.187 165–70
[20] Bostan A, Boukraa S, Christol G, Hassani S and Maillard J-M 2013 Ising n-fold integrals as diagonals of rational functions and integrality of series expansions J. Phys. A: Math. Theor.46 185202 · Zbl 1267.82021
[21] Lipshitz L 1988 The diagonal of a D-finite power series is D-finite J. Algebra113 373–8 · Zbl 0657.13024
[22] Furstenberg H 1967 Algebraic functions over finite fields J. Algebra7 271–7 · Zbl 0175.03903
[23] Christol G 2016 Fonctions algébriques modulo n Contemp. Math. (submitted)
[24] Boukraa S and Maillard J-M 2016 Selected non-holonomic functions in lattice statistical mechanics and enumerative combinatorics J. Phys. A: Math. Theor.49 074001 · Zbl 1342.82021
[25] Tutte W T 1982 Chromatic solutions: II Canad. J. Math.34 952–60 · Zbl 0505.05030
[26] Tutte W T 1984 Map-colourings and differential equations Progress in Graph Theory(Waterloo, Ont., 1982) (Toronto: Academic) pp 477–85
[27] Jacobi C G J 1848 Über die differentialgleichung, welcher die Reihen Genüge Leisten J. Angew. Math.36 97–112 · ERAM 036.1001cj
[28] Chakravarty S and Ablowitz M 2010 Parameterizations of the Chazy equation Stud. Appl. Math.124 105–35 · Zbl 1217.34136
[29] Cobham A 1969 On the base-dependence of sets of numbers recognizable by finite automata Math. Systems Theory3 186–92 · Zbl 0179.02501
[30] Christol G 2015 Diagonals of rational fractions Newsletter of the European Mathematical Society (Issue 97, September 2015) pp 37–43 · Zbl 1380.12006
[31] Lipshitz L and Rubel L A 1986 A gap theorem for power series solutions of differentially algebraic equations Amer. J. Math.108 1193–214 · Zbl 0605.12014
[32] Bergeron F and Reutenauer C 1990 Combinatorial resolution of systems of differential equations III: special class of differentially algebraic series Eur. J. Comb.11 501–12 · Zbl 0757.34009
[33] Odlyzko A M and Richmond L B 1983 A differential equation arising in chromatic sum theory Proc. 14th Southeastern Conf. on Combinatorics, Graph Theory and Computing(Boca Raton, FL, 1983)vol 40 pp 263–75
[34] Bernardi O and Bousquet-Mélou M 2011 Counting colored planar maps: algebraicity results J. Combin. Theory B 101 315–77 · Zbl 1223.05123
[35] Boukraa S, Hassani S, Maillard J-M, McCoy B M, Weil J-A and Zenine N 2007 Fuchs versus Painlevé J. Phys. A: Math. Theor.40 2583–614
[36] Chazy J 1909 Sur les équations différentielles dont l’intégrale générale est uniforme et admet des singularités essentielles mobiles C. R. Acad. Sc. Paris149 563–5
[37] Chazy J 1911 Sur les équations différentielles du troisième ordre et d’ordre supérieur dont l’intégrale a ses points critiques fixes Acta Math.34 317–85
[38] Ovsienko V and Tabachnikov S 2009 What is the Schwarzian derivative? Not. Am. Math. Soc.56 34–6 · Zbl 1176.53002
[39] Osgood B 1998 Old and New on the Schwarzian derivative Quasiconformal Mappings and Analysis, A Collection of Papers Honoring F.W. Gehring (Berlin: Springer) pp 275–308 · Zbl 0894.30001
[40] Bostan A, Boukraa S, Hassani S, van Hoeij M, Maillard J-M, Weil J-A and Zenine N 2011 The Ising model: from elliptic curves to modular forms and Calabi–Yau equations J. Phys. A: Math. Theor.44 045204 · Zbl 1208.82006
[41] Lipshitz L and van der Poorten A J 1990 Rational functions, diagonals, automata and arithmetic, (Dedicated to the memory of Kurt Mahler) Number Theory: Proc. 1st Conf. Canadian Number Theory Association ed R A Mollin and W de Gruyter pp 339–58
[42] Denef J and Lipshitz L 1985 Algebraic power series and diagonals J. Numb. Theor.26 46–67
[43] Adamczewski B and Bell J P 2013 Diagonalization and rationalization of algebraic laurent series Ann. Sci. l’ENS 46, Fascicule6 963–1004 · Zbl 1318.13033
[44] Jensen I http://ms.unimelb.edu.au/wan/ising/Ising ser.html
[45] Cox D A, Little J and O’Shea D 2015 Ideals, varieties, and algorithms An Introduction to Computational Algebraic Geometry and Commutative Algebra(Undergraduate Texts in Mathematics) 4th edn (Cham: Springer) xvi+646
[46] Perk J H H 1980 Quadratic identities for Ising model correlations Phys. Lett. A 79 3–5
[47] Perk J H H 1981 Nonlinear partial difference equations for Ising model n-point Green’s functions Proc. IInd Int. Symp. on Selected Topics in Statistical Mechanics(Dubna, 25–29 August 1981) (Dubna, USSR: JINR) pp 138–51
[48] McCoy B M, Perk J H H and Wu T T 1981 Ising field theory: quadratic difference equations for the n-point Green’s functions on the square lattice Phys. Rev. Lett.46 757–60
[49] Bernardi O and Bousquet-Mélou M 2015 Counting colored planar maps: differential equations arXiv: 1507.02391v2 [math.CO]
[50] Bousquet-Mélou M and Jehanne A 2006 Polynomial equations with one catalytic variable, algebraic series and map enumeration J. Combin. Theory B 96 623–72 · Zbl 1099.05043
[51] Bousquet-Mélou M and Courtiel J 2015 Spanning forests in regular planar maps J. Comb. Theor. A 135 1–59 · Zbl 1319.05070
[52] Tutte W T 1973 Chromatic sums for rooted planar triangulations: III. The case {\(\lambda\)} = 3 Canad. J. Math.25 780–90 · Zbl 0268.05113
[53] Tutte W T 1973 Chromatic sums for rooted planar triangulations. The cases {\(\lambda\)} = 1 and {\(\lambda\)} = 2 Canad. J. Math.25 426–47 · Zbl 0253.05122
[54] Tutte W T 1974 Chromatic sums for rooted planar triangulations: V. Special equations Canad. J. Math.26 893–907 · Zbl 0287.05103
[55] Maillet E 1920 Sur les séries divergentes et les équations différentielles Ann. Scient. l’ENS, 3ème Série, Tome20 487–518
[56] André Y 2003 Arithmetic Gevrey series and transcendence. A survey Proc. J. Arith. Lille, J. Théor. Nombres Bordeaux15 1–10 · Zbl 1136.11315
[57] Pólya G 1921-22 Sur les séries entières dont la somme est une fonction algébrique Enseignement Math.22 38–47
[58] Pólya G and Szegö G 1976 Problems and Theorems in Analysis II (Berlin: Springer)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.