×

Image restoration via the adaptive \(TV^p\) regularization. (English) Zbl 1446.94012

Summary: To keep structures in the restoration problem is very important via coupling the local information of the image with the proposed model. In this paper we propose a local self-adaptive \(\ell^p\)-regularization model for \(p\in(0,2)\) based on the total variation scheme, where the choice of \(p\) depends on the local structures described by the eigenvalues of the structure tensor. Since the proposed model as the classic \(\ell^p\) problem unifies two classes of optimization problems such as the nonconvex and nonsmooth problem when \(p\in(0,1)\), and the convex and smooth problem when \(p\in(1,2)\), it is generally challenging to find a ready algorithmic framework to solve it. Here we propose a new and robust numerical method via coupling with the half-quadratic scheme and the alternating direction method of multipliers (ADMM). The convergence of the proposed algorithm is established and the numerical experiments illustrate the possible advantages of the proposed model and numerical methods over some existing variational-based models and methods.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
65K05 Numerical mathematical programming methods
65R32 Numerical methods for inverse problems for integral equations
Full Text: DOI

References:

[1] Gonzalez, R.; Woods, R., Digital Image Processing (2007), Hardcover
[2] Jain, A., Fundamentals of Digital Image Processing (1989), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0744.68134
[3] Aubert, G.; Kornprobst, P., Mathematical Problem in Image Processing: Partial Differential Equations and the Calculus of Variations (2008), Springer: Springer New York
[4] Chan, T.; Shen, J., Image Processing and Analysis-Variational, PDE, Wavelet, and Stochastic Methods (2005), SIAM: SIAM Philadephia · Zbl 1095.68127
[5] Scherzer, O., Handbook of Mathematical Methods in Imaging (2015), Springer: Springer New York · Zbl 1322.68001
[6] Rudin, L.; Osher, S.; Fatemi, E., Nonlinear total variation based noise removal algorithms, Physica D, 60, 1-4, 259-268 (1992) · Zbl 0780.49028
[7] Bredies, K.; Kunisch, K.; Pock. Total generalized variation, T., SIAM J. imaging sci., 3, 3, 492-526 (2010) · Zbl 1195.49025
[8] Selesnick, I., Generalized total variation: tying the knots, IEEE Signal Process. Lett., 22, 11, 2009-2013 (2015)
[9] Chan, T.; Marquina, A.; Mulet, P., High-order total variation-based image restoration, SIAM J. Sci. Comput., 22, 2, 503-516 (2000) · Zbl 0968.68175
[10] Hu, Y.; Ongie, G.; Ramani, S.; Jacob, M., Generalized higher degree total variation (HDTV) regularization, IEEE Trans. Image Process., 23, 6, 2423-2435 (2014) · Zbl 1374.94148
[11] Buades, A.; Coll, B.; Morel, J., A review of image denoising methods, with a new one, Multiscale Model. Simul., 4, 2, 490-530 (2006) · Zbl 1108.94004
[12] Gilboa, G.; Osher, S., Nonlocal operators with applications to image processing, Multiscale Model. Simul., 7, 3, 1005-1028 (2008) · Zbl 1181.35006
[13] Bai, J.; Feng, X., Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16, 10, 2492-2502 (2007) · Zbl 1119.76377
[14] Zhang, J.; Wei, Z., A class of fractional-order multi-scale variational models and alternating projection algorithm for image denoising, Appl. Math. Model., 35, 5, 2516-2528 (2011) · Zbl 1217.94024
[15] Sidky, E.; Chartrand, R.; Boone, J.; Pan, X., Constrained \(T V^p\) minimization for enhanced exploitation of gradient sparsity: application to CT image reconstruction, IEEE J. Transl. Eng. Health Med., 30, 2, Article 1800418 pp. (2004)
[16] Borges, L.; Bazan, F.; Bedin, L., A projection-based algorithm for \(\ell^2 - \ell^p\) Tikhonov regularization, Math. Methods Appl. Sci., 41, 15, 5919-5938 (2018) · Zbl 1405.65056
[17] Lanza, A.; Morigi, S.; Sgallari, F., Constrained \(T V_p - \ell_2\) model for image restoration, J. Sci. Comput., 68, 1, 64-91 (2016) · Zbl 1344.65025
[18] Prasath, V.; Vorotnikov, D.; Pelapur, R.; Seetharaman, G.; Palaniappan, K., Multiscale tikhonov-total variation image restoration using spatially varying edge coherence exponent, IEEE Trans. Image Process., 24, 12, 5220-5235 (2015) · Zbl 1408.94541
[19] P. Blomgren, T. Chan, P. Mulet, C. Wong, Total variation image restoration: numerical methods and extensions, in: IEEE International Conference on Image Processing, III, 1997, pp. 384-387.
[20] Chen, Y.; Levine, S.; Rao. Variable exponent, M., Linear growth functionals in image restoration, SIAM J. Appl. Math., 64, 4, 1383-1406 (2006) · Zbl 1102.49010
[21] Chena, Q.; Montesinosb, P.; Suna, Q.; Heng, P.; Xia, D., Adaptive total variation denoising based on difference curvature, Image Vis. Comput., 28, 3, 298-306 (2010)
[22] A. Lanza, S. Morigi, F. Sgallari, Convex image denoising via non-convex regularization, in: International Conference on Scale Space and Variational Methods in Computer Vision, 2015, pp. 666-677. · Zbl 1444.94015
[23] Dong, Y.; Hintermller, M.; Rincon-Camacho, M., Automated regularization parameter selection in multi-scale total variation models for image restoration, J. Math. Imaging Vision, 40, 1, 82-104 (2011) · Zbl 1255.68230
[24] Lv, J.; Shen, L.; Xu, X.; Xu, Y., Multiplicative noise removal in imaging: An exp-model and its fixed-point proximity algorithm, Appl. Comput. Harmon. Anal., 4, 2, 518-539 (2016) · Zbl 1360.94043
[25] Estellers, V.; Soatto, S.; Bresson, X., Adaptive regularization with the structure tensor, IEEE Trans. Image Process., 24, 6, 1777-1790 (2015) · Zbl 1408.94166
[26] Weikert, J.; Romeny, B.; Viergever, M., Efficient and reliable schemes for nonlinear diffusion, IEEE Trans. Image Process., 7, 3, 398-410 (1998)
[27] Wu, C.; Tai, X., Augmented Lagrangian method, dual methods, and split bregman iteration for ROF, vectorial TV, and high order models, SIAM J. Imaging Sci., 3, 3, 300-339 (2010) · Zbl 1206.90245
[28] Goldstein, T.; Osher, S., The split bregman method for L1-regularized problems, SIAM J. Imaging Sci., 2, 2, 323-343 (2009) · Zbl 1177.65088
[29] He, B.; You, Y.; Yuan, X., On the convergence of primal-dual hybrid gradient algorithm, SIAM J. Imaging Sci., 7, 4, 2526-2537 (2014) · Zbl 1308.90129
[30] Chambolle, A.; Pock, T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40, 1, 120-145 (2011) · Zbl 1255.68217
[31] P. Combettes, L. Condat, J. Pesquet, B. Vū, A forward-backward view of some primal-dual optimization methods in image recovery, in: IEEE International Conference on Image Processing (ICIP), 2014, pp. 27-30.
[32] Setzers, S., Operator splittings, Bregman methods and frame shrinkage in image processing, Int. J. Comput. Vis., 92, 3, 265-280 (2009) · Zbl 1235.68314
[33] Courant, R.; Friedrichs, K.; Lewy, H., On the partial difference equations of mathematical physics, IBM J. Res. Dev., 11, 2, 215-234 (1967) · Zbl 0145.40402
[34] Rodriguez, P.; Wohlberg, B., Efficient minimization method for a generalized total variation functional, IEEE Trans. Image Process., 18, 2, 322-332 (2009) · Zbl 1371.94316
[35] Daubechies, I.; Defrise, M.; Mol, C., Sparsity-enforcing regularisation and ISTA revisited, Inverse Problems, 32, 10, Article 104001 pp. (2016) · Zbl 1402.65048
[36] Woodworth, J.; Chartrand, R., Compressed sensing recovery via nonconvex shrinkage penalties, Inverse Problems, 32, 7, Article 075004 pp. (2016) · Zbl 1347.65111
[37] Xu, Z.; Zhang, H.; Wang, Y.; Chang, X.; Liang, Y., \( L_{1 / 2}\) regularization:convergence of iterative half thresholding algorithm, IEEE Trans. Signal Process., 69, 2, 2317-2329 (2014) · Zbl 1393.90145
[38] Lanza, A.; Morigi, S.; Pragliola, M.; Sgallari, F., Space-variant generalized Gaussian regularization for image restoration, Comput. Methods Biomech. Biomed. Eng. Imaging Vis., 1-14 (2018)
[39] W. Zuo, D. Meng, L. Zhang, X. Feng, D. Zhang, A generalized iterated shrinkage algorithm for non-convex sparse coding, in: International Conference of Computer Vision (ICCV), 2013, pp. 217-224.
[40] Liu, Z.; Wu, C.; Zhao, Y., A new globally convergent algorithm for non-Lipschitz \(\ell_p - \ell_q\) minimization, Adv. Comput. Math., 45, 3, 1369-1399 (2019) · Zbl 1415.49022
[41] Chan, R.; Liang, H., Half-quadratic algorithm for \(\ell_q- \ell_p\) problems with application to TV-\( \ell_1\) image restoration and compressive sensing, (Global Optimization Methods. Global Optimization Methods, LNCS (2014)), 78-103
[42] Lanza, A.; Morigi, S.; Reichel, L.; Sgallari, F., A generalized krylov subspace method for \(\ell_p - \ell_q\) minimization, SIAM J. Sci. Comput., 37, 5, S30-S50 (2015) · Zbl 1343.65077
[43] Nikolova, M.; Chan, T., The equivalence of the half-quadratic minimization and the gradient linearization iteration, IEEE Trans. Image Process., 16, 6, 1623-1627 (2007)
[44] Geman, D.; Yang, C., Nonlinear image recovery with half-quadratic regularization, IEEE Trans. Image Process., 47, 2, 932-946 (1995)
[45] Rockafellar, R.; Wets, R., Variational Analysis (1998), Springer · Zbl 0888.49001
[46] Moreau, J., Propriét propriés des applications prox, C. R. Acad. Sci. Paris, 256, 1069-1071 (1963) · Zbl 0115.10802
[47] Chan, R.; Chan, T.; Zhou, H., Continuation method for total variation denoising problems, Proc. SPIE, 2563, 314-325 (1995)
[48] Glowinski, R.; Marroco, A., Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problémes de Dirichlet non linéares, Rev. Fr. Autom. Inform. Rech. Oper., 9, R-2, 41-76 (1975) · Zbl 0368.65053
[49] Gabay, D.; Mercier, B., A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Comput. Math. Appl., 2, 1, 17-40 (1976) · Zbl 0352.65034
[50] Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J., Distributed optimization and statistical learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3, 1, 1-122 (2011) · Zbl 1229.90122
[51] Guo, K.; Han, D.; Wu, T., Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints, Int. J. Comput. Math., 1-17 (2016)
[52] Attouch, H.; Bolte, J.; Redont, P.; Soubeyran, A., Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality, Math. Oper. Res., 35, 2, 438-457 (2010) · Zbl 1214.65036
[53] Wang, Y.; Yin, W.; Zeng, J., Global convergence of ADMM in nonconvex nonsmooth optimization, J. Sci. Comput., 78, 1, 29-63 (2019) · Zbl 1462.65072
[54] Shen, H.; Peng, L.; Yue, L.; Yuan, Q.; Zhang, L., Adaptive norm selection for regularized image restoration and super-resolution, IEEE Trans. Cybern., 46, 6, 1388-1399 (2016)
[55] Ma, H.; Nie, Y., An edge fusion scheme for image denoising based on anisotropic diffusion models, J. Vis. Commun. Image Represent., 40, B, 406-417 (2016)
[56] Wang, X.; Huang, S.; Xu, H., An efficient local Chan-Vese model for image segmentation, Pattern Recognit., 43, 3, 603-618 (2010) · Zbl 1185.68817
[57] Lindeberg, T., Scale-Space Theory in Computer Vision (1994), Springer-Verlag: Springer-Verlag Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.