×

Convex image denoising via non-convex regularization. (English) Zbl 1444.94015

Aujol, Jean-François (ed.) et al., Scale space and variational methods in computer vision. 5th international conference, SSVM 2015, Lège-Cap Ferret, France, May 31 – June 4, 2015. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 9087, 666-677 (2015).
Summary: Natural image statistics motivate the use of non-convex over convex regularizations for restoring images. However, they are rarely used in practice due to the challenge to find a good minimizer. We propose a Convex Non-Convex (CNC) denoising variational model and an efficient minimization algorithm based on the Alternating Directions Methods of Multipliers (ADMM) approach. We provide theoretical convexity conditions for both the CNC model and the optimization sub-problems arising in the ADMM-based procedure, such that convergence to a unique global minimizer is guaranteed. Numerical examples show that the proposed approach is particularly effective and well suited for images characterized by sparse-gradient distributions.
For the entire collection see [Zbl 1362.68008].

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
49M25 Discrete approximations in optimal control
49N45 Inverse problems in optimal control
Full Text: DOI

References:

[1] Lanza, A., Morigi, S., Sgallari, F.: Constrained TVp \(-L_2\) model for Image Restoration. http://people.ciram.unibo.it/sgallari/Publications · Zbl 1344.65025
[2] Calvetti, D., Reichel, L.: Tikhonov regularization of large linear problems. BIT Numer. Math. 43, 263-283 (2003) · Zbl 1038.65048 · doi:10.1023/A:1026083619097
[3] Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: Tikhonov regularization and the L-curve for large discrete ill-posed problems. J. Comp. Appl. Math. 123, 423-446 (2000) · Zbl 0977.65030 · doi:10.1016/S0377-0427(00)00414-3
[4] Chan, R.H., Tao, M., Yuan, X.M.: Constrained Total Variational Deblurring Models and Fast Algorithms Based on Alternating Direction Method of Multipliers. SIAM J. Imag. Sci. 6, 680-697 (2013) · Zbl 1279.68322 · doi:10.1137/110860185
[5] Chen, P.Y., Selesnick, I.W.: Group-Sparse Signal Denoising: Non-Convex Regularization, Convex Optimization. IEEE Trans. on Sign. Proc. 62, 3464-3478 (2014) · Zbl 1394.94115 · doi:10.1109/TSP.2014.2329274
[6] Lu, C.W.: Image restoration and decomposition using non-convex nonsmooth regularisation and negative Hilbert-Sobolev norm. IET Image Proc. 6, 706-716 (2012) · doi:10.1049/iet-ipr.2011.0345
[7] Nikolova, M., Ng, M., Tam, C.P.: On \(\ell_1\) Data Fitting and Concave Regularization for Image Recovery. SIAM J. on Scientific Computing 35(1), A397-A430 (2013) · Zbl 1267.65028 · doi:10.1137/10080172X
[8] Nikolova, M.: Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers. SIAM J. on Numerical Analysis 40(3), 965-994 (2002) · Zbl 1018.49025 · doi:10.1137/S0036142901389165
[9] Nikolova, M., Ng, M.K., Tam, C.P.: Fast Non-convex Non-smooth Minimization Methods for Image Restoration and Reconstruction. IEEE Trans. Image Proc. 19(12), 3073-3088 (2010) · Zbl 1371.94277 · doi:10.1109/TIP.2010.2052275
[10] Rodríguez, P., Wohlberg, B.: Efficient minimization method for a generalized total variation functional. IEEE Trans. Image Proc. 18, 322-332 (2009) · Zbl 1371.94316 · doi:10.1109/TIP.2008.2008420
[11] Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physics D 60(1-4), 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[12] Selesnick, I.W., Bayram, I.: Sparse Signal Estimation by Maximally Sparse Convex Optimization. IEEE Trans. on Signal Proc. 62(5), 1078-1092 (2014) · Zbl 1394.94510 · doi:10.1109/TSP.2014.2298839
[13] Selesnick, I.W., Parekh, A., Bayram, I.: Convex 1-D total variation denoising with non-convex regularization. IEEE Signal Proc. Letters 22(2), 141-144 (2015) · doi:10.1109/LSP.2014.2349356
[14] Sidky, E. · doi:10.1109/JTEHM.2014.2300862
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.