×

CUSUM test for general nonlinear integer-valued GARCH models: comparison study. (English) Zbl 1431.62396

Summary: This study considers the problem of testing a parameter change in general nonlinear integer-valued time series models where the conditional distribution of current observations is assumed to follow a one-parameter exponential family. We consider score-, (standardized) residual-, and estimate-based CUSUM tests and show that their limiting null distributions take the form of the functions of Brownian bridges. Based on the obtained results, we then conduct a comparison study of the performance of CUSUM tests through the use of Monte Carlo simulations. Our findings demonstrate that the standardized residual-based CUSUM test largely outperforms the others.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
65C05 Monte Carlo methods
Full Text: DOI

References:

[1] Al-Osh, M. A., Aly, E.-E. A. (1992). First order autoregressive time series with negative binomial and geometric marginals. Communications in Statistics-Theory and Methods, 21(9), 2483-2492. · Zbl 0775.62225
[2] Alzaid, A., Al-Osh, M. (1990). An integer-valued pth-order autoregressive structure (INAR(p)) process. Journal of Applied Probability, 27, 314-324. · Zbl 0704.62081
[3] Berkes, I., Horvth, L., Kokoszka, P. (2004). Testing for parameter constancy in GARCH(p, q) models. Statistics & Probability Letters, 70(4), 263-273. · Zbl 1058.62070
[4] Chen, C. W., Lee, S. (2016). Generalized Poisson autoregressive models for time series of counts. Computational Statistics & Data Analysis, 99, 51-67. · Zbl 1468.62037
[5] Christou, V., Fokianos, K. (2014). Quasi-likelihood inference for negative binomial time series models. Journal of Time Series Analysis, 35(1), 55-78. · Zbl 1301.62084
[6] Csörgö, M., Horváth, L. (1997). Limit theorems in change-point analysis (Vol. 18). New York: Wiley. · Zbl 0884.62023
[7] Davis, R. A., Liu, H. (2016). Theory and inference for a class of observation-driven models with application to time series of counts. Statistica Sinica, 26(4), 1673-1707. · Zbl 1356.62137
[8] Davis, R. A., Wu, R. (2009). A negative binomial model for time series of counts. Biometrika, 96(3), 735-749. · Zbl 1170.62062
[9] Diop, M. L., Kengne, W. (2017). Testing parameter change in general integer-valued time series. Journal of Time Series Analysis, 38(6), 880-894. · Zbl 1386.60132
[10] Doukhan, P., Fokianos, K., Tjøstheim, D. (2012). On weak dependence conditions for Poisson autoregressions. Statistics & Probability Letters, 82(5), 942-948. · Zbl 1241.62109
[11] Doukhan, P., Fokianos, K., Tjøstheim, D. (2013). Correction to “On weak dependence conditions for Poisson autoregressions”. Statistics & Probability Letters, 83(8), 1926-1927. · Zbl 1412.62100
[12] Ferland, R., Latour, A., Oraichi, D. (2006). Integer-valued GARCH process. Journal of Time Series Analysis, 27(6), 923-942. · Zbl 1150.62046
[13] Fokianos, K., Fried, R. (2010). Interventions in INGARCH processes. Journal of Time Series Analysis, 31(3), 210-225. · Zbl 1242.62095
[14] Fokianos, K., Fried, R. (2012). Interventions in log-linear Poisson autoregression. Statistical Modelling, 12(4), 299-322. · Zbl 07257881
[15] Fokianos, K., Rahbek, A., Tjøstheim, D. (2009). Poisson autoregression. Journal of American Statistical Association, 104(488), 1430-1439. · Zbl 1205.62130
[16] Fokianos, K., Gombay, E., Hussein, A. (2014). Retrospective change detection for binary time series models. Journal of Statistical Planning & Inferences, 145, 102-112. · Zbl 1278.62143
[17] Francq, C., Zakoïan, J.-M. (2004). Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli, 10(4), 605-637. · Zbl 1067.62094
[18] Franke, J., Kirch, C., Kamgaing, J. T. (2012). Changepoints in times series of counts. Journal of Time Series Analysis, 33(5), 757-770. · Zbl 1281.62181
[19] Heinen, A. (2003). Modelling time series count data: an autoregressive conditional Poisson model. Available at SSRN 1117187.
[20] Hudecová, Š. (2013). Structural changes in autoregressive models for binary time series. Journal of Statistical Planning & Inferences, 143(10), 1744-1752. · Zbl 1279.62186 · doi:10.1016/j.jspi.2013.05.009
[21] Hudecová, Š., Hudecová, M., Meintanis, S. (2016). Change detection in INARCH time series of counts. In R. Cao, W. Gonzalez Manteiga, J. Romo (Ed.), Nonparametric Statistics (Vol. 175, pp. 47-58). · Zbl 1366.62066
[22] Huh, J., Kim, H., Lee, S. (2017). Monitoring parameter shift with Poisson integer-valued GARCH models. Journal of Statistical Computation & Simulation, 87(9), 1754-1766. · Zbl 07192028
[23] Kang, J., Lee, S. (2009). Parameter change test for random coefficient integer-valued autoregressive processes with application to polio data analysis. Journal of Time Series Analysis, 30(2), 239-258. · Zbl 1221.62126
[24] Kang, J., Lee, S. (2014). Parameter change test for Poisson autoregressive models. Scandinavian Journal of Statistics, 41(4), 1136-1152. · Zbl 1305.62313
[25] Kim, H., Lee, S. (2017). On first-order integer-valued autoregressive process with Katz family innovations. Journal of Statistical Computation & Simulation, 87(3), 546-562. · Zbl 07191955
[26] Lee, S., Lee, J. (2015). Parameter change test for nonlinear time series models with GARCH type errors. Journal of Korean Mathematical Society, 52(23), 503-553. · Zbl 1312.62109
[27] Lee, S., Ha, J., Na, O., Na, S. (2003). The cusum test for parameter change in time series models. Scandinavian Journal of Statistics, 30(4), 781-796. · Zbl 1053.62085
[28] Lee, S., Tokutsu, Y., Maekawa, K. (2004). The cusum test for parameter change in regression models with ARCH errors. Journal of Japan Statistical Society, 34(2), 173-188. · Zbl 1062.62191
[29] Lee, S., Lee, Y., Chen, C. W. (2016). Parameter change test for zero-inflated generalized Poisson autoregressive models. Statistics, 50(3), 1-18. · Zbl 1359.62376
[30] Lee, Y., Lee, S., Tjøstheim, D. (2018). Asymptotic normality and parameter change test for bivariate Poisson INGARCH models. TEST, 27(1), 52-69. · Zbl 06852282
[31] McKenzie, E. (1985). Some simple models for discrete variate time series1. Journal of American Water Resource Association, 21(4), 645-650. · doi:10.1111/j.1752-1688.1985.tb05379.x
[32] McKenzie, E. (2003). Ch. 16. Discrete variate time series. Handbook of statistics, 21, 573-606. · Zbl 1064.62560 · doi:10.1016/S0169-7161(03)21018-X
[33] Neumann, M. H. (2011). Absolute regularity and ergodicity of Poisson count processes. Bernoulli, 17(4), 1268-1284. · Zbl 1277.60089 · doi:10.3150/10-BEJ313
[34] Oh, H., Lee, S. (2017). On score vector- and residual-based CUSUM tests in ARMA-GARCH models. Statistical Methods & Applications: Online published. · Zbl 1427.62104
[35] Oh, H., Lee, S. (2018). Modified residual CUSUM test for location-scale time series models with heteroscedasticity. Accepted. · Zbl 1431.62406
[36] Weiß, C. H. (2008). Thinning operations for modeling time series of counts-a survey. AStA-Advances Statistical Analysis, 92(3), 319-341. · Zbl 1477.62256 · doi:10.1007/s10182-008-0072-3
[37] Weiß, C. H., Testik, M. C. (2009). Cusum monitoring of first-order integer-valued autoregressive processes of Poisson counts. Journal of Quality Technology, 41(4), 389-400.
[38] Weiß, C. H., Testik, M. C. (2011). The Poisson INAR(1) CUSUM chart under overdispersion and estimation error. IIE Transactions, 43(11), 805-818.
[39] Zhu, F. (2011). A negative binomial integer-valued GARCH model. Journal of Time Series Analysis, 32(1), 54-67. · Zbl 1290.62092 · doi:10.1111/j.1467-9892.2010.00684.x
[40] Zhu, F. (2012a). Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued GARCH models. Journal of Mathematical Analysis & Applications, 389(1), 58-71. · Zbl 1232.62120 · doi:10.1016/j.jmaa.2011.11.042
[41] Zhu, F. (2012b). Zero-inflated Poisson and negative binomial integer-valued GARCH models. Journal of Statistical Planning & Inferences, 142(4), 826-839. · Zbl 1232.62121 · doi:10.1016/j.jspi.2011.10.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.