×

A review of level-set methods and some recent applications. (English) Zbl 1380.65196

Summary: We review some of the recent advances in level-set methods and their applications. In particular, we discuss how to impose boundary conditions at irregular domains and free boundaries as well as the extension of level-set methods to adaptive Cartesian grids and parallel architectures. Illustrative applications are taken from the physical and life sciences. Fast sweeping methods are briefly discussed.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65N08 Finite volume methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Osher, Stanley; Sethian, James A., Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 1, 12-49 (1988) · Zbl 0659.65132
[2] Juric, D.; Tryggvason, G., A front tracking method for dendritic solidification, J. Comput. Phys., 123, 127-148 (1996) · Zbl 0843.65093
[3] Juric, D.; Tryggvason, G., Computations of boiling flows, Int. J. Multiph. Flow, 24, 387-410 (1998) · Zbl 1121.76455
[4] Qian, J.; Tryggvason, G.; Law, C. K., A front tracking method for the motion of premixed flames, J. Comput. Phys., 144, 1, 52-69 (July 1998) · Zbl 1392.76050
[5] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y.-J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 708-759 (2001) · Zbl 1047.76574
[6] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multifluid flows, J. Comput. Phys., 100, 25-37 (1992) · Zbl 0758.76047
[7] Bo, Wurigen; Liu, Xingtao; Glimm, James; Li, Xiaolin, A robust front tracking method: verification and application to simulation of the primary breakup of a liquid jet, SIAM J. Sci. Comput., 33, 4, 1505-1524 (2011) · Zbl 1465.76084
[8] Aulisa, Eugenio; Manservisi, Sandro; Scardovelli, Ruben; Zaleski, Stephane, A geometrical area-preserving volume-of-fluid advection method, J. Comput. Phys., 192, 1, 355-364 (2003) · Zbl 1032.76632
[9] Benson, D., Volume of fluid interface reconstruction methods for multimaterial problems, Appl. Mech. Rev., 52, 151-165 (2002)
[10] Benson, D., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng., 99, 235-394 (1992) · Zbl 0763.73052
[11] DeBar, R., Fundamentals of the KRAKEN Code (1974), Lawrence Livermore National Laboratory (UCID-17366), Technical report
[12] Dyadechko, V.; Shashkov, M., Moment-of-Fluid Interface Reconstruction (2006), Technical report, Los Alamos National Laboratory (LA-UR-05-7571)
[13] Hirt, C.; Nichols, B., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[14] Noh, W.; Woodward, P., SLIC (simple line interface calculation), (5th International Conference on Numerical Methods in Fluid Dynamics (1976)), 330-340 · Zbl 0382.76084
[15] Renardy, Yuriko; Prost, Michael Renardy, A parabolic reconstruction of surface tension for the volume-of-fluid method, J. Comput. Phys., 183, 2, 400-421 (2002) · Zbl 1057.76569
[16] Sussman, Mark; Puckett, Elbridge Gerry, A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162, 2, 301-337 (2000) · Zbl 0977.76071
[17] Wang, Zhaoyuan; Yang, Jianming; Stern, Frederick, A new volume-of-fluid method with a constructed distance function on general structured grids, J. Comput. Phys., 231, 9, 3703-3722 (2012) · Zbl 1402.65091
[18] Yang, Xiaofeng; James, Ashley J.; Lowengrub, John; Zheng, Xiaoming; Cristini, Vittorio, An adaptive coupled level-set/volume-of-fluid interface capturing method for unstructured triangular grids, J. Comput. Phys., 217, 2, 364-394 (2006) · Zbl 1160.76377
[19] Youngs, D., An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code (1984), Technical report, AWRE (44/92/35)
[20] Popinet, Stéphane, An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys., 228, 16, 5838-5866 (September 2009) · Zbl 1280.76020
[21] Braun, R.; Murray, M., Adaptive phase-field computations of dendritic crystal growth, J. Cryst. Growth, 174, 41 (1997)
[22] Elder, K.; Grant, M.; Provatas, N.; Kosterlitz, J., Sharp interface limits of phase-field models, SIAM J. Appl. Math., 64, Article 21604 pp. (2001)
[23] Jeong, J.-H.; Goldenfeld, N.; Dantzig, J., Phase field model for three-dimensional dendritic growth with fluid flow, Phys. Rev. E, 64, Article 41602 pp. (2001)
[24] Karma, A.; Rappel, W.-J., Phase-field modeling method for computationally efficient modeling of solidification with arbitrary interface kinetics, Phys. Rev. E, 53 (1996)
[25] Karma, A.; Rappel, W.-J., Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57, 4323-4349 (1997) · Zbl 1086.82558
[26] Karma, A., Phase-field formulation for quantitative modeling of alloy solidification, Phys. Rev. Lett., 87, Article 115701 pp. (2001)
[27] Nestler, B.; Danilov, D.; Galenko, P., Crystal growth of pure substances: phase-field simulations in comparison with analytical and experimental results, J. Comput. Phys., 207, 221-239 (2005) · Zbl 1177.80079
[28] Provatas, N.; Goldenfeld, N.; Dantzig, J., Efficient computation of dendritic microstructures using adaptive mesh refinement, Phys. Rev. Lett., 80, 3308 (1998)
[29] Provatas, N.; Goldenfeld, N.; Dantzig, J., Adaptive mesh refinement computation of solidification microstructure using dynamic data structures, J. Comput. Phys., 148, 265 (1999) · Zbl 0932.80003
[30] Sussman, M.; Smereka, P.; Osher, S., A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114, 146-159 (1994) · Zbl 0808.76077
[31] Jiang, G.-S.; Peng, D., Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput., 21, 2126-2143 (2000) · Zbl 0957.35014
[32] Jiang, G.-S.; Shu, C.-W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[33] Liu, X.-D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 126, 202-212 (1996)
[34] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes II, J. Comput. Phys., 83, 32-78 (1989) · Zbl 0674.65061
[35] Shu, Chi-Wang, Efficient implementation of essentially non-oscillatory schemes, II, J. Comput. Phys., 78, 32-78 (1989) · Zbl 0674.65061
[36] Russo, G.; Smereka, P., A remark on computing distance functions, J. Comput. Phys., 163, 51-67 (2000) · Zbl 0964.65089
[37] du Chene, A.; Min, C.; Gibou, F., Second-order accurate computation of interface curvature in a level set framework, J. Sci. Comput., 35, 114-131 (2008) · Zbl 1203.65043
[38] Tsitsiklis, J., Efficient algorithms for globally optimal trajectories, IEEE Trans. Autom. Control, 40, 1528-1538 (1995) · Zbl 0831.93028
[39] Sethian, J., A fast marching level set method for monotonically advancing fronts, Proc. Natl. Acad. Sci., 93, 1591-1595 (1996) · Zbl 0852.65055
[40] Zhao, Hongkai, A fast sweeping method for eikonal equations, Math. Comput., 74, 603-627 (2004) · Zbl 1070.65113
[41] Tsai, Yen-Hsi Richard, Rapid and accurate computation of the distance function using grids, J. Comput. Phys., 178, 1, 175-195 (2002) · Zbl 0997.65090
[42] Cheng, L-T.; Tsai, Y.-H., Redistancing by flow of time dependent eikonal equation redistancing by flow of time dependent eikonal equation redistancing by flow of time dependent eikonal equation redistancing by flow of time dependent Eikonal equation, J. Comput. Phys., 4002-4017 (2008) · Zbl 1317.76060
[43] Tsai, Y.-H.; Cheng, L.-T.; Osher, S., Fast sweeping algorithms for a class of Hamilton-Jacobi equations, SIAM J. Numer. Anal., 41, 2, 673-694 (2003) · Zbl 1049.35020
[44] J. Helmsen, E.G. Puckett, P. Colella, M. Dorr, Two new methods for simulating photolithography development in 3D, in: Proceedings of the SPIE - The International Society for Optical Engineering Optical Microlithography IX, Santa Clara, CA, USA, vols. 13-15, pp. 253-261.; J. Helmsen, E.G. Puckett, P. Colella, M. Dorr, Two new methods for simulating photolithography development in 3D, in: Proceedings of the SPIE - The International Society for Optical Engineering Optical Microlithography IX, Santa Clara, CA, USA, vols. 13-15, pp. 253-261.
[45] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces (2002), Springer-Verlag: Springer-Verlag New York, NY
[46] Sethian, J. A., Level set methods and fast marching methods, (Cambridge Monographs on Applied and Computational Mathematics, vol. 3 (1999), Cambridge University Press: Cambridge University Press Cambridge), Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science · Zbl 0929.65066
[47] Darbon, Jerome; Osher, Stanley, Algorithms for overcoming the curse of dimensionality for certain Hamilton-Jacobi equations arising in control theory and elsewhere, Res. Math. Sci., 3, 19 (2016) · Zbl 1348.49026
[48] Lee, Byungjoon; Darbon, Jerome; Osher, Stanley; Kang, Myungjoo, Revisiting the redistancing problem using the Hopf-Lax formula, J. Comput. Phys., 330, 268-281 (2017) · Zbl 1378.35292
[49] Michael Royston, Andre Pradhana, Byungjoon Lee, Yat Tin Chow, Wotao Yin, Joseph Teran, Stanley Osher, Parallel redistancing using the Hopf-Lax formula, UCLA CAM report 17-21, Accepted in JCP.; Michael Royston, Andre Pradhana, Byungjoon Lee, Yat Tin Chow, Wotao Yin, Joseph Teran, Stanley Osher, Parallel redistancing using the Hopf-Lax formula, UCLA CAM report 17-21, Accepted in JCP. · Zbl 1395.65118
[50] Chow, Y.-T.; Osher, S.; Darbon, J.; Yin, W., Algorithms for Overcoming the Curse of Dimensionality for Time Dependent Nonconvex Hamilton-Jacobi Equations Arising from Control and Differential Games Problems (2016), UCLA CAM report 16-62
[51] Chow, Y-T.; Osher, S.; Darbon, J.; Yin, W., Algorithms for Overcoming the Curse of Dimensionality for Certain Nonconvex Hamilton-Jacobi Equations, Projections and Differential Games (2016), UCLA CAM report 16-27
[52] Morgan, Nathaniel R.; Waltz, Jacob I., 3d level set methods for evolving fronts on tetrahedral meshes with adaptive mesh refinement, J. Comput. Phys., 336, 492-512 (2017) · Zbl 1375.76112
[53] Abgrall, R.; Beaugendre, H.; Dobrzynski, C., An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques, J. Comput. Phys., 257, Part A, 83-101 (2014) · Zbl 1349.76580
[54] Berger, M.; Oliger, J., Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys., 53, 484-512 (1984) · Zbl 0536.65071
[55] Berger, M.; Colella, P., Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys., 82, 64-84 (1989) · Zbl 0665.76070
[56] Sussman, M.; Almgren, A.; Bell, J.; Colella, P.; Howell, L.; Welcome, M., An adaptive level set approach for incompressible two-phase flows, J. Comput. Phys., 148, 81-124 (1999) · Zbl 0930.76068
[57] McCorquodale, P.; Colella, P.; Grote, D.; Vay, J.-L., A node-centered local refinement algorithm for Poisson’s equation in complex geometries, J. Comput. Phys., 201, 34-60 (2004) · Zbl 1059.65094
[58] Strain, J., A fast modular semi-Lagrangian method for moving interfaces, J. Comput. Phys., 161, 512-536 (2000) · Zbl 0959.65110
[59] Min, Chohong; Gibou, Frederic; Ceniceros, Hector, A supra-convergent finite difference scheme for the variable coefficient Poisson equation on non-graded grids, J. Comput. Phys., 218, 123-140 (2006) · Zbl 1106.65093
[60] Min, Chohong; Gibou, Frederic, A second order accurate projection method for the incompressible Navier-Stokes equations on non-graded adaptive grids, J. Comput. Phys., 219, 2, 912-929 (December 2006) · Zbl 1330.76096
[61] Chen, Han; Min, Chohong; Gibou, Frederic, A supra-convergent finite difference scheme for the Poisson and heat equations on irregular domains and non-graded adaptive Cartesian grids, J. Sci. Comput., 31, 19-60 (2007) · Zbl 1120.65113
[62] Min, Chohong; Gibou, Frederic, Geometric integration over irregular domains with application to level-set methods, J. Comput. Phys., 226, 1432-1443 (2007) · Zbl 1125.65021
[63] Min, Chohong; Gibou, Frederic, Robust second-order accurate discretizations of the multi-dimensional Heaviside and Dirac delta functions, J. Comput. Phys., 227, 22, 9686-9695 (November 2008) · Zbl 1153.65014
[64] Chen, Han; Min, Chohong; Gibou, Frederic, A numerical scheme for the Stefan problem on adaptive Cartesian grids with supralinear convergence rate, J. Comput. Phys., 228, 16, 5803-5818 (2009) · Zbl 1176.80059
[65] Theillard, M.; Rycroft, C. H.; Gibou, F., A multigrid method on non-graded adaptive octree and quadtree cartesian grids, J. Sci. Comput., 55, 1-15 (2012) · Zbl 1273.65188
[66] Theillard, Maxime; Fokoua Djodom, Landry; Vié, Jean-Léopold; Gibou, Frédéric, A second-order sharp numerical method for solving the linear elasticity equations on irregular domains and adaptive grids - application to shape optimization, J. Comput. Phys., 233, 430-448 (2013) · Zbl 1286.74109
[67] Papac, Joseph; Helgadottir, Asdis; Ratsch, Christian; Gibou, Frederic, A level set approach for diffusion and Stefan-type problems with Robin boundary conditions on quadtree/octree adaptive cartesian grids, J. Comput. Phys., 233, 241-261 (2013)
[68] Mirzadeh, M.; Theillard, M.; Helgadottir, A.; Boy, D.; Gibou, F., An adaptive, finite difference solver for the nonlinear Poisson-Boltzmann equation with applications to biomolecular computations, Commun. Comput. Phys., 13, 1, 150-173 (2012) · Zbl 1388.65135
[69] Helgadóttir, Ásdís; Gibou, Frederic, A Poisson-Boltzmann solver on irregular domains with Neumann or Robin boundary conditions on non-graded adaptive grid, J. Comput. Phys., 230, 3830-3848 (2011) · Zbl 1369.76033
[70] Mirzadeh, M.; Gibou, F., A conservative discretization of the Poisson-Nernst-Planck equations on adaptive cartesian grids, J. Comput. Phys., 274, 633-653 (2014) · Zbl 1351.82082
[71] Theillard, M.; Gibou, F.; Pollock, T., A sharp computational method for the simulation of the solidification of binary alloys, J. Sci. Comput., 63, 330-354 (2014) · Zbl 1426.76572
[72] Ouaknin, Gaddiel; Laachi, Nabil; Delaney, Kris; Fredrickson, Glenn H.; Gibou, Frederic, Self-consistent field theory simulations of polymers on arbitrary domains, J. Comput. Phys., 327, 168-185 (2016) · Zbl 1373.82105
[73] Mirzadeh, Mohammad, Maxime Theillard, and Frédéric Gibou. A second-order discretization of the nonlinear Poisson-Boltzmann equation over irregular geometries using non-graded adaptive Cartesian grids, J. Comput. Phys., 230, 5, 2125-2140 (2011) · Zbl 1390.82056
[74] Guittet, Arthur; Theillard, Maxime; Gibou, Frédéric, A stable projection method for the incompressible Navier-Stokes equations on arbitrary geometries and adaptive quad/octrees, J. Comput. Phys., 292, 215-238 (2015) · Zbl 1349.76336
[75] Guittet, Arthur; Poignard, Clair; Gibou, Frederic, A Voronoi interface approach to cell aggregate electropermeabilization, J. Comput. Phys., 332, 143-159 (2017) · Zbl 1378.92015
[76] Guittet, Arthur; Lepilliez, Mathieu; Tanguy, Sebastien; Gibou, Frédéric, Solving elliptic problems with discontinuities on irregular domains - the Voronoi interface method, J. Comput. Phys., 298, 747-765 (2015) · Zbl 1349.65579
[77] Brun, Emmanuel; Guittet, Arthur; Gibou, Frederic, A local level-set method using a hash table data structure, J. Comput. Phys., 231, 2528-2536 (2012) · Zbl 1242.65156
[78] Aftosmis, M. J.; Berger, M. J.; Melton, J. E., Adaptive Cartesian mesh generation, (CRC Handbook of Mesh Generation (1998)), (Contributed Chapter)
[79] Popinet, S., Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Comput. Phys., 190, 572-600 (2003) · Zbl 1076.76002
[80] Losasso, Frank; Gibou, Frederic; Fedkiw, Ron, Simulating water and smoke with an octree data structure, ACM Trans. Graph. (SIGGRAPH Proc.), 457-462 (2004)
[81] Losasso, Frank; Fedkiw, Ron; Osher, Stanley, Spatially adaptive techniques for level set methods and incompressible flow, Comput. Fluids, 35, 995-1010 (2006) · Zbl 1177.76295
[82] Guittet, A.; Theillard, M.; Gibou, F., A stable projection method for the incompressible Navier-Stokes equations on arbitrary geometries and adaptive Quad/Octrees, J. Comput. Phys., 292, 215-238 (2015) · Zbl 1349.76336
[83] Samet, H., The Design and Analysis of Spatial Data Structures (1989), Addison-Wesley: Addison-Wesley New York
[84] Samet, H., Applications of Spatial Data Structures: Computer Graphics, Image Processing and GIS (1990), Addison-Wesley: Addison-Wesley New York
[85] Moore, D., The cost of balancing generalized quadtrees, (Proceedings of the Third ACM Symposium on Solid Modeling and Applications (1995)), 305-312
[86] Weiser, A., Local-Mesh Local-Order, Adaptive Finite Element Methods with a Posteriori Error Estimators for Elliptic Partial Differential Equations (June 1981), Yale University, PhD thesis
[87] Strain, J., Fast tree-based redistancing for level set computations, J. Comput. Phys., 152, 664-686 (1999) · Zbl 0944.65020
[88] Min, C., Local level set method in high dimension and codimension, J. Comput. Phys., 200, 368-382 (2004) · Zbl 1086.65088
[89] Min, Chohong; Gibou, Frederic, A second order accurate level set method on non-graded adaptive Cartesian grids, J. Comput. Phys., 225, 1, 300-321 (2007) · Zbl 1122.65077
[90] Min, Chohong, On reinitializing level set functions, J. Comput. Phys., 229, 8, 2764-2772 (April 2010) · Zbl 1188.65122
[91] Strain, J., Tree methods for moving interfaces, J. Comput. Phys., 151, 616-648 (1999) · Zbl 0942.76061
[92] Lentine, Michael; Grétarsson, Jón Tómas; Fedkiw, Ronald, An unconditionally stable fully conservative semi-Lagrangian method, J. Comput. Phys., 230, 8, 2857-2879 (2011) · Zbl 1316.76076
[93] (2017)
[94] Mirzadeh, Mohammad; Guittet, Arthur; Burstedde, Carsten; Gibou, Frederic, Parallel level-set methods on adaptive tree-based grids, J. Comput. Phys., 322, 345-364 (2016) · Zbl 1352.65253
[95] Burstedde, Carsten; Wilcox, Lucas C.; Ghattas, Omar, : scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 3, 1103-1133 (2011) · Zbl 1230.65106
[96] Enright, Douglas; Fedkiw, Ronald; Ferziger, Joel; Mitchell, Ian, A hybrid particle level set method for improved interface capturing, J. Comput. Phys., 183, 1, 83-116 (2002) · Zbl 1021.76044
[97] Fedkiw, Ronald P.; Aslam, Tariq; Merriman, Barry; Osher, Stanley, A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 2, 457-492 (1999) · Zbl 0957.76052
[98] Fedkiw, Ronald P.; Marquina, Antonio; Merriman, Barry, An isobaric fix for the overheating problem in multimaterial compressible flows, J. Comput. Phys., 148, 2, 545-578 (1999) · Zbl 0933.76075
[99] Fedkiw, Ronald P.; Aslam, Tariq; Xu, Shaojie, The ghost fluid method for deflagration and detonation discontinuities, J. Comput. Phys., 154, 2, 393-427 (1999) · Zbl 0955.76071
[100] Nguyen, Duc; Gibou, Frederic; Fedkiw, Ronald, A fully conservative ghost fluid method and stiff detonation waves, (12th Int. Detonation Symposium. 12th Int. Detonation Symposium, San Diego, CA (2002))
[101] Fedkiw, Ronald P., Coupling an eulerian fluid calculation to a lagrangian solid calculation with the ghost fluid method, J. Comput. Phys., 175, 1, 200-224 (2002) · Zbl 1039.76050
[102] Caiden, Rachel; Fedkiw, Ronald P.; Anderson, Chris, A numerical method for two-phase flow consisting of separate compressible and incompressible regions, J. Comput. Phys., 166, 1, 1-27 (2001) · Zbl 0990.76065
[103] Nguyen, Duc Q.; Fedkiw, Ronald P.; Kang, Myungjoo, A boundary condition capturing method for incompressible flame discontinuities, J. Comput. Phys., 172, 1, 71-98 (2001) · Zbl 1065.76575
[104] Kang, M.; Fedkiw, R.; Liu, X.-D., A boundary condition capturing method for multiphase incompressible flow, J. Sci. Comput., 15, 323-360 (2000) · Zbl 1049.76046
[105] Liu, Xu-Dong; Fedkiw, Ronald P.; Kang, Myungjoo, A boundary condition capturing method for Poisson’s equation on irregular domains, J. Comput. Phys., 160, 1, 151-178 (2000) · Zbl 0958.65105
[106] Gibou, Frederic; Chen, Liguo; Nguyen, Duc; Banerjee, Sanjoy, A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change, J. Comput. Phys., 222, 2, 536-555 (March 2007) · Zbl 1158.76403
[107] Gibou, Frederic; Fedkiw, Ronald; Cheng, L.-T.; Kang, Myngjoo, A second-order accurate symmetric discretization of the Poisson equation on irregular domains, J. Comput. Phys., 176, 205-227 (2002) · Zbl 0996.65108
[108] Gibou, Frédéric; Fedkiw, Ronald, A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem, J. Comput. Phys., 202, 2, 577-601 (2005) · Zbl 1061.65079
[109] Gibou, F.; Fedkiw, R.; Caflisch, R.; Osher, S., A level set approach for the numerical simulation of dendritic growth, J. Sci. Comput., 19, 183-199 (2003) · Zbl 1081.74560
[110] Papac, Joseph; Gibou, Frederic; Ratsch, Christian, Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions, J. Comput. Phys., 229, 875-889 (2010) · Zbl 1182.65140
[111] Liu, Xu-Dong; Sideris, Thomas, Convergence of the ghost-fluid method for elliptic equations with interfaces, Math. Comput., 72, 1731-1746 (2003) · Zbl 1027.65140
[112] Saye, Robert I.; Sethian, James A., The Voronoi implicit interface method for computing multiphase physics, Proc. Natl. Acad. Sci. USA, 108, 19498-19503 (2011) · Zbl 1256.65082
[113] Balay, Satish; Brown, Jed; Buschelman, Kris; Eijkhout, Victor; Gropp, William D.; Kaushik, Dinesh; Knepley, Matthew G.; Curfman McInnes, Lois; Smith, Barry F.; Zhang, Hong, PETSc Users Manual (2012), Argonne National Laboratory
[114] Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, Hong Zhang. Petsc web page, 2012.; Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, Hong Zhang. Petsc web page, 2012.
[115] Hypre web page, 2012.; Hypre web page, 2012.
[116] Falgout, R. D.; Yang, U. M., Hypre: A Library of High Performance Preconditioners, vol. 2331 (2002), Springer: Springer Berlin, Heidelberg · Zbl 1056.65046
[117] Rycroft, C. H., Voro++: a three-dimensional Voronoi cell library in C++, Chaos, 19 (2009)
[118] Shortley, G. H.; Weller, R., Numerical solution of Laplace’s equation, J. Appl. Phys., 9, 334-348 (1938) · Zbl 0019.03801
[119] Yoon, Gangjoon; Min, Chohong, Analyses on the finite difference method by Gibou et al. for Poisson equation, J. Comput. Phys., 280, 184-194 (2015) · Zbl 1349.65573
[120] Yoon, Gangjoon; Min, Chohong, Convergence analysis of the standard central finite difference method for Poisson equation, J. Sci. Comput., 67, 602-617 (2016) · Zbl 1345.65063
[121] Seo, Jiwon; yeal Ha, Seung; Min, Chohong, Convergence analysis in the \(l^\infty\) norm of the numerical gradient of the Shortley-Weller method, J. Sci. Comput. (2017) · Zbl 1397.65227
[122] Daniil Bochkov, Frederic Gibou, Solving the Poisson equation with Robin boundary conditions on piecewise smooth irregular boundaries, in preparation, 2017.; Daniil Bochkov, Frederic Gibou, Solving the Poisson equation with Robin boundary conditions on piecewise smooth irregular boundaries, in preparation, 2017. · Zbl 1398.65269
[123] Pouria Mistani, Arthur Guittet, Daniil Bochkov, Joshua Schneider, Dionisios Margetis, Christian Ratsch, Frederic Gibou, The island dynamics model on parallel quadtree grids, in preparation, 2017.; Pouria Mistani, Arthur Guittet, Daniil Bochkov, Joshua Schneider, Dionisios Margetis, Christian Ratsch, Frederic Gibou, The island dynamics model on parallel quadtree grids, in preparation, 2017. · Zbl 1422.65212
[124] Gibou, Frederic; Min, Chohong; Fedkiw, Ronald, High resolution sharp computational methods for elliptic and parabolic problems in complex geometries, J. Sci. Comput., 54, 369-413 (2013) · Zbl 1263.65093
[125] Sethian, J., Fast marching methods, SIAM Rev., 41, 199-235 (1999) · Zbl 0926.65106
[126] Chacon, A.; Vladimirsky, A., A parallel two-scale method for Eikonal equations, SIAM J. Sci. Comput., 37, A156-A180 (2015) · Zbl 1348.49025
[127] Chopp, D. L., Some improvements of the fast marching method, J. Sci. Comput., 23, 1, 230-244 (2001) · Zbl 0991.65105
[128] Rouy, E.; Tourin, A., A viscosity solution approach to shape-from-shading, SIAM J. Numer. Anal., 29, 3, 867-884 (June 1992) · Zbl 0754.65069
[129] Zhao, Hongkai, Parallel implementations of the fast sweeping method, J. Comput. Math., 25, 421-429 (2007)
[130] Detrixhe, Miles; Gibou, Frédéric; Min, Chohong, A parallel fast sweeping method for the eikonal equation, J. Comput. Phys., 237, 46-55 (2013)
[131] Miles Detrixhe, Frédéric Gibou, Hybrid massively parallel fast sweeping method for static Hamilton-Jacobi equations, in preparation, 2014.; Miles Detrixhe, Frédéric Gibou, Hybrid massively parallel fast sweeping method for static Hamilton-Jacobi equations, in preparation, 2014. · Zbl 1352.65624
[132] Krug, J.; Politi, P.; Michely, T., Island nucleation in the presence of step-edge barriers: theory and applications, Phys. Rev. B, 61, Article 14037 pp. (2000)
[133] Caflisch, R. E.; Gyure, M. F.; Merriman, B.; Osher, S.; Ratsch, C.; Vvedensky, D. D.; Zinck, J. J., Island dynamics and the level set method for epitaxial growth, Appl. Math. Lett., 12, 13 (1999) · Zbl 0937.35191
[134] Chen, S.; Kang, M.; Merriman, B.; Caflisch, R. E.; Ratsch, C.; Fedkiw, R.; Gyure, M. F.; Osher, S., Level set method for thin film epitaxial growth, J. Comput. Phys., 167, 475 (2001) · Zbl 0993.74081
[135] Ratsch, C.; Gyure, M. F.; Chen, S.; Kang, M.; Vvedensky, D. D., Fluctuation and scaling in aggregation phenomena, Phys. Rev. B, 61, Article R10598 pp. (2000)
[136] Niu, X.; Vardavas, R.; Caflisch, R. E.; Ratsch, C., A level set simulation of directed self-assembly during epitaxial growth, Phys. Rev. B, 74, Article 193403 pp. (2006)
[137] Gibou, Frederic; Ratsch, Christian; Chen, Suzan; Gyure, Mark; Caflisch, Russel, Rate equations and capture numbers with implicit Island correlations, Phys. Rev. B, 63, Article 115401 pp. (2001)
[138] Vvedensky, D.; Ratsch, C.; Gibou, F.; Vardavas, R., Singularities and spatial fluctuations in submonolayer epitaxy, Phys. Rev. Lett., 90, Article 189601 pp. (2003)
[139] Ratsch, C.; Gyure, M. F.; Caflisch, R. E.; Gibou, F.; Petersen, M.; Kang, M.; Garcia, J.; Vvedensk, D. D., Level-set method for island dynamics in epitaxial growth, Phys. Rev. B, 65, Article 195403 pp. (2002)
[140] Burton, W. K.; Cabrera, N.; Frank, F. C., The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. R. Soc. Lond., Ser. A, 243, 299-358 (1951) · Zbl 0043.23402
[141] Bales, G. S.; Chrzan, D. C., Dynamics of irreversible island growth during submonolayer epitaxy, Phys. Rev. B, 50, 6057-6067 (1994)
[142] Gibou, Frederic; Ratsch, Christian; Caflisch, Russel, Capture numbers in rate equations and scaling laws for epitaxial growth, Phys. Rev. B, 67, Article 155403 pp. (2003)
[143] Chernov, A. A., The spiral growth of crystals, Sov. Phys. Usp., 4, 116-148 (1961)
[144] Villain, J., Continuum models of crystal growth from atomic beams with and without desorption, J. Phys. (France) I, 1 (1991)
[145] Jeong, H.-C.; Williams, E. D., Steps on surfaces: experiment and theory, Surf. Sci. Rep., 34, 171-294 (1999)
[146] Pimpinelli, A.; Villain, J., Physics of Crystal Growth (1999), Cambridge University Press: Cambridge University Press Cambridge, UK
[147] Lu, J.; Liu, J.-G.; Margetis, D., Emergence of step flow from an atomistic scheme of epitaxial growth in 1 + 1 dimensions, Phys. Rev. E, 91, Article 032403 pp. (2015)
[148] Davis, S., Theory of Solidification (2001), Cambridge University Press: Cambridge University Press Cambridge, England · Zbl 0991.76002
[149] Kurz, W.; Fisher, D. J., Fundamentals of Solidification (1998), Trans. Tech. Publication
[150] Mir, L. M., Electroporation of cells in tissues. Methods for detecting cell electropermeabilisation in vivo, (Electroporation Based Technologies and Treatment: Proceedings of the International Scientific Workshop and Postgraduate Course. Electroporation Based Technologies and Treatment: Proceedings of the International Scientific Workshop and Postgraduate Course, Ljubljana, Slovenia, 14-20 November (2005)), 32-35
[151] Gabriel, B.; Teissié, J., Time courses of mammalian cell electropermeabilization observed by millisecond imaging of membrane property changes during the pulse, Biophys. J., 76, 4, 2158-2165 (1999), (electronic)
[152] Vernhes, M. C.; Cabanes, P. A.; Teissié, J., Chinese hamster ovary cells sensitivity to localized electrical stresses, Bioelectrochem. Bioenerg., 48, 17-25 (1999)
[153] Gothelf, Anita; Mir, Lluis M.; Gehl, Julie, Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation, Cancer Treat. Rev., 29, 5, 371-387 (2003)
[154] Teissié, J.; Golzio, M.; Rols, M. P., Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knownledge, Biochim. Biophys. Acta, 1724, 270-280 (2005)
[155] Teissié, J., Electropermeabilization of the cell membrane, (Li, S.; Cutrera, J.; Heller, R.; Teissié, J., Electroporation Protocols. Preclinical and Clinical Gene Medicine (2014), Springer), Chapter 2
[156] DeBruin, K.; Krassowska, W., Modelling electroporation in a single cell. I. Effects of field strength and rest potential, Biophys. J., 77, 1213-1224 (Sept 1999)
[157] DeBruin, K.; Krassowska, W., Modelling electroporation in a single cell. II. Effects of ionic concentrations, Biophys. J., 77, 1225-1233 (Sept 1999)
[158] Weaver, J. C., Electroporation of cells and tissues, IEEE Trans. Plasma Sci., 28 (2000)
[159] Vasilkoski, Z.; Esser, A. T.; Gowrishankar, T. R.; Weaver, J. C., Membrane electroporation: the absolute rate equation and nanosecond time scale pore creation, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., 74, 2 Pt 1, Article 021904 pp. (2006)
[160] Kavian, Otared; Leguèbe, Michael; Poignard, Clair; Weynans, Lisl, “Classical” electropermeabilization modeling at the cell scale, J. Math. Biol., 1-31 (2012) · Zbl 1300.92023
[161] Leguèbe, M.; Silve, A.; Mir, L. M.; Poignard, C., Conducting and permeable states of cell membrane submitted to high voltage pulses: mathematical and numerical studies validated by the experiments, J. Theor. Biol., 360, 83-94 (2014) · Zbl 1343.92037
[162] Poignard, C.; Silve, A.; Wegner, L., Different approaches used in modeling of cell membrane electroporation, (Miklavčič, D., Handbook on Electroporation (2017), Springer International Publishing)
[163] Hirschhaeuser, Franziska; Menne, Heike; Dittfeld, Claudia; West, Jonathan; Mueller-Klieser, Wolfgang; Kunz-Schughart, Leoni A., Multicellular tumor spheroids: an underestimated tool is catching up again, J. Biotechnol., 148, 1, 3-15 (July 2010)
[164] Gibot, Laure; Wasungu, Luc; Teissié, Justin; Rols, Marie-Pierre, Antitumor drug delivery in multicellular spheroids by electropermeabilization, J. Control. Release, 167, 2, 138-147 (April 2013)
[165] Foster, K. R.; Schwan, H. P., Dielectric properties of tissues and biological materials: a critical review, Crit. Rev. Biomed. Eng., 17, 1, 25-104 (1989)
[166] Fear, E. C.; Stuchly, M. A., Modelling assemblies of biological cells exposed to electric fields, IEEE Trans. Biomed. Eng., 45, 10, 1259-1271 (Oct 1998)
[167] Segalman, R. A., Patterning with block copolymer thin films, Mater. Sci. Eng., R Rep., 48, 6, 191-226 (2005)
[168] Galatsis, K.; Wang, K. L.; Ozkan, M.; Ozkan, C. S.; Huang, Y.; Chang, J. P.; Monbouquette, H. G.; Chen, Y.; Nealey, P. F.; Botros, Y., Patterning and templating for nanoelectronics, Adv. Mater., 22, 6, 769-778 (2010)
[169] Herr, D. J.C., Directed block copolymer self-assembly for nanoelectronics fabrication, J. Mater. Res., 26, 02, 122-139 (2011)
[170] Osher, Stanley; Santosa, Fadil, Level set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum, J. Comput. Phys., 171, 272-288 (2001) · Zbl 1056.74061
[171] Allaire, Grégoire; Jouve, François; Toader, Anca-Maria, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys. (2003) · Zbl 1051.49028
[172] Theillard, Maxime; Fokoua Djodom, Landry; Vié, Jean-Léopold; Gibou, Frédéric, A second-order sharp numerical method for solving the linear elasticity equations on irregular domains and adaptive grids - application to shape optimization, J. Comput. Phys., 233, 430-448 (2013) · Zbl 1286.74109
[173] Osher, Stanley; Fedkiw, Ronald P., Level set methods: an overview and some recent results, J. Comput. Phys., 169, 2, 463-502 (2001) · Zbl 0988.65093
[174] Chantalat, Frédéric; Bruneau, Charles-Henri; Galusinski, Cédric; Iollo, Angelo, Level-set, penalization and cartesian meshes: a paradigm for inverse problems and optimal design, J. Comput. Phys., 228, 17, 6291-6315 (2009) · Zbl 1175.65108
[175] Iollo, Angelo; Salas, Manuel D., Contribution to the optimal shape design of two-dimensional internal flows with embedded shocks, J. Comput. Phys., 125, 1, 124-134 (1996) · Zbl 0848.76072
[176] Ouaknin, Gaddiel Y.; Laachi, Nabil; Delaney, Kris; Fredrickson, Glenn H.; Gibou, Frederic, Level-set strategy for inverse DSA-lithography, J. Comput. Phys. (2017), submitted for publication · Zbl 1378.49049
[177] Fredrickson, G. H., The Equilibrium Theory of Inhomogeneous Polymers, vol. 134 (2006), Oxford University Press: Oxford University Press USA · Zbl 1113.82075
[178] Helfand, Eugene, Block copolymer theory. iii. Statistical mechanics of the microdomain structure, Macromolecules, 8, 4, 552-556 (1975)
[179] Helfand, Eugene, Theory of inhomogeneous polymers: fundamentals of the gaussian random walk model, J. Chem. Phys., 62, 3, 999-1005 (1975)
[180] De Gennes, P.-G., A rule of sums for semidilute polymer chains near a wall, C. R. Seances Acad. Sci, Ser. B, 290, 23, 509-510 (1980)
[181] Ouaknin, Gaddiel; Laachi, Nabil; Bochkov, Daniil; Delaney, Kris; Fredrickson, Glenn; Gibou, Frederic, Functional level-set derivative for self consistent field theory, J. Comput. Phys., 345, 168-185 (2017) · Zbl 1378.49049
[182] Cooray, G. K.; Sengupta, B.; Douglas, P.; Englund, M.; Wickstrom, R.; Friston, K., Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling, NeuroImage, 118, 508-519 (2015)
[183] Hebb, A. O.; Zhang, J. J.; Mahoor, M. H.; Tsiokos, C.; Matlack, C.; Chizeck, H. J.; Pouratian, N., Creating the feedback loop: closed-loop neurostimulation, Neurosurg. Clin. N. Am., 25, 187-204 (2014)
[184] Winfree, Arthur, Patterns of phase compromise in biological cycles, J. Math. Biol., 95 (1974) · Zbl 0402.92004
[185] Detrixhe, Miles; Doubeck, Marion; Moehlis, Jeff; Gibou, Frederic, Fast Eulerian approach for computation of global isochrons of high-dimensional biological models, SIAM J. Appl. Dyn. Syst., 15, 1501-1527 (2016) · Zbl 1372.65331
[186] Hodgkin, L.; Huxley, A., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117, 500-544 (1952)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.