×

A fast Eulerian approach for computation of global isochrons in high dimensions. (English) Zbl 1372.65331

Summary: We present a novel Eulerian numerical method to compute global isochrons of a stable periodic orbit in high dimensions. Our approach is to formulate the asymptotic phase as a solution to a first-order boundary value problem and solve the resulting Hamilton-Jacobi equation with the parallel fast sweeping method. All isochrons are then given as isocontours of the phase. We apply this method to the Hodgkin-Huxley equations and a model of a dopaminergic neuron which exhibits mixed mode oscillations. Our results show that this Eulerian scheme is an efficient, accurate method for computing the asymptotic phase of a periodic dynamical system. Furthermore, by computing the phase on a Cartesian grid, it is simple to compute the gradient of phase, and thus compute an “almost phaseless” target set for the purposes of desynchronization of a system of oscillators.

MSC:

65P40 Numerical nonlinear stabilities in dynamical systems
37N25 Dynamical systems in biology
37C27 Periodic orbits of vector fields and flows
35F21 Hamilton-Jacobi equations

References:

[1] D. Adalsteinsson and J. Sethian, {\it A fast level set method for propagating interfaces}, J. Comput. Phys., 118 (1995), pp. 269-277. · Zbl 0823.65137
[2] P. Ashwin and J. Swift, {\it The dynamics of n weakly coupled identical oscillators}, J. Nonlinear Sci., 2 (1992), pp. 69-108, http://link.springer.com/article/10.1007/BF02429852 doi:10.1007/BF02429852. · Zbl 0872.58049
[3] S. Bak, J. McLaughlin, and D. Renzi, {\it Some improvements for the fast sweeping method}, SIAM J. Sci. Comput., 32 (2010), pp. 2853-2874, http://dx.doi.org/10.1137/090749645 doi:10.1137/090749645. · Zbl 1219.65124
[4] R. Bellman, {\it Dynamic Programming}, Princeton University Press, Princeton, NJ, 1957. · Zbl 0077.13605
[5] M. Boue and P. Dupuis, {\it Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control}, in Proceedings of the 36th IEEE Conference on Decision and Control, 4 (1997), pp. 667-695, http://dx.doi.org/10.1109/CDC.1997.652377 doi:10.1109/CDC.1997.652377. · Zbl 0933.65073
[6] E. Brown, J. Moehlis, and P. Holmes, {\it On the phase reduction and response dynamics of neural oscillator populations}, Neural Comput., 16 (2004), pp. 673-715, http://dx.doi.org/10.1162/089976604322860668 doi:10.1162/089976604322860668. · Zbl 1054.92006
[7] A. Chacon and A. Vladimirsky, {\it Fast two-scale methods for eikonal equations}, SIAM J. Sci. Comput., 34 (2012), pp. A547-A578, http://dx.doi.org/10.1137/10080909X doi:10.1137/10080909X. · Zbl 1244.49047
[8] A. Chacon and A. Vladimirsky, {\it A parallel two-scale method for eikonal equations}, SIAM J. Sci. Comput., 37 (2015), pp. A156-A180, http://epubs.siam.org/doi/10.1137/12088197X doi:10.1137/12088197X; preprint available from http://arxiv.org/abs/arXiv:1306.4743v1 arXiv:1306.4743v1. · Zbl 1348.49025
[9] E. A. Coddington and N. Levinson, {\it Theory of Ordinary Differential Equations}, McGraw-Hill, New York, 1955. · Zbl 0064.33002
[10] M. Crandall and P. Lions, {\it Two approximations of solutions of Hamilton-Jacobi equations}, Math. Comp., 43 (1984), pp. 1-19, http://dx.doi.org/10.2307/2007396 doi:10.2307/2007396. · Zbl 0556.65076
[11] P. Danzl, J. Hespanha, and J. Moehlis, {\it Event-based minimum-time control of oscillatory neuron models: Phase randomization, maximal spike rate increase, and desynchronization}, Biological Cybernet., 101 (2009), pp. 387-399, http://dx.doi.org/10.1007/s00422-009-0344-3 doi:10.1007/s00422-009-0344-3. · Zbl 1345.92037
[12] M. Detrixhe and F. Gibou, {\it Hybrid massively parallel fast sweeping method for static Hamilton-Jacobi equations}, J. Comput. Phys., 322 (2016), pp. 199-223, http://dx.doi.org/10.1016/j.jcp.2016.06.023 doi:10.1016/j.jcp.2016.06.023. · Zbl 1352.65624
[13] M. Detrixhe, F. Gibou, and C. Min, {\it A parallel fast sweeping method for the eikonal equation}, J. Comput. Phys., 237 (2013), pp. 46-55, http://dx.doi.org/10.1016/j.jcp.2012.11.042 doi:10.1016/j.jcp.2012.11.042.
[14] J. Guckenheimer, {\it Isochrons and phaseless sets}, J. Math. Biol., 273 (1975), pp. 259-273, http://link.springer.com/article/10.1007/BF01273747 doi:10.1007/ BF01273747. · Zbl 0345.92001
[15] A. Guillamon and G. Huguet, {\it A computational and geometric approach to phase resetting curves and surfaces}, SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 1005-1042, http://dx.doi.org/10.1137/080737666 doi:10.1137/080737666. · Zbl 1216.34030
[16] D. Hansel, G. Mato, and C. Meunier, {\it Phase dynamics for weakly coupled Hodgkin-Huxley neurons}, Europhys. Lett., 367 (1993), pp. 367-372, http://iopscience.iop.org/0295-5075/23/5/011 doi:0295-5075/23/5/011.
[17] A. Hodgkin and A. Huxley, {\it A quantitative description of membrane current and its application to conduction and excitation in nerve}, J. Physiol., 117 (1952), pp. 500-544, http://www.ncbi.nlm.nih.gov/pmc/articles/pmc1392413/.
[18] F. C. Hoppensteadt and E. M. Izhikevich, {\it Weakly Connected Neural Networks}, Springer-Verlag, New York, 1997. · Zbl 0887.92003
[19] G. Huguet and R. de la Llave, {\it Computation of limit cycles and their isochrons: Fast algorithms and their convergence}, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 1763-1802, http://dx.doi.org/10.1137/120901210 doi:10.1137/120901210. · Zbl 1291.37108
[20] E. M. Izhikevich, {\it Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting}, MIT Press, Cambridge, MA, 2007, http://cns-pc62.bu.edu/cn510/Papers/Izhikevich_Ch8.pdf.
[21] W.-K. Jeong and R. T. Whitaker, {\it A fast iterative method for eikonal equations}, SIAM J. Sci. Comput., 30 (2008), pp. 2512-2534, http://dx.doi.org/10.1137/060670298 doi:10.1137/060670298. · Zbl 1246.70003
[22] G.-S. Jiang and D. Peng, {\it Weighted ENO schemes for Hamilton-Jacobi equations}, SIAM J. Sci. Comput., 21 (2000), pp. 2126-2143, http://dx.doi.org/10.1137/S106482759732455X doi:10.1137/S106482759732455X. · Zbl 0957.35014
[23] G.-S. Jiang and C.-W. Shu, {\it Efficient implementation of weighted ENO schemes}, J. Comput. Phys., 126 (1996), pp. 202-228. · Zbl 0877.65065
[24] C.-Y. Kao, S. Osher, and Y.-H. Tsai, {\it Fast sweeping methods for static Hamilton-Jacobi equations}, SIAM J. Numer. Anal., 42 (2005), pp. 2612-2632, http://dx.doi.org/10.1137/S0036142902419600 doi:10.1137/S0036142902419600. · Zbl 1090.35016
[25] J. P. Keener and J. Sneyd, {\it Mathematical Physiology}, Springer, New York, 1998. · Zbl 0913.92009
[26] N. Kopell and G. B. Ermentrout, {\it Phase transitions and other phenomena in chains of coupled oscillators}, SIAM J. Appl. Math., 50 (1990), pp. 1014-1052, http://dx.doi.org/10.1137/0150062 doi:10.1137/0150062. · Zbl 0711.34029
[27] M. Krupa, N. Popović, N. Kopell, and H. G. Rotstein, {\it Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron}, Chaos, 18 (2008), 015106, http://dx.doi.org/10.1063/1.2779859 doi:10.1063/1.2779859. · Zbl 1306.34057
[28] Y. Kuramoto, {\it Chemical Oscillations, Waves, and Turbulence}, Springer, Berlin, 1984, http://link.springer.com/book/10.1007 · Zbl 0558.76051
[29] P. Lesaint and P.-A. Raviart, {\it On a finite element method for solving the neutron transport equation}, in Mathematical Aspects of Finite Elements in Partial Differential Equations, Academic Press, New York, 1974, pp. 89-123. · Zbl 0341.65076
[30] A. Mauroy and I. Mezić, {\it On the use of Fourier averages to compute the global isochrons of (quasi)-periodic dynamics}, Chaos, 22 (2012), 033112, http://dx.doi.org/10.1063/1.4736859 doi:10.1063/1.4736859. · Zbl 1319.70024
[31] G. S. Medvedev and J. E. Cisternas, {\it Multimodal regimes in a compartmental model of the dopamine neuron}, Phys. D, 194 (2004), pp. 333-356, http://dx.doi.org/10.1016/j.physd.2004.02.006 doi:10.1016/j.physd.2004.02.006. · Zbl 1055.92012
[32] J. Moehlis, {\it Improving the precision of noisy oscillators}, Phys. D, 272 (2014), pp. 8-17, http://dx.doi.org/10.1016/j.physd.2014.01.001 doi:10.1016/ j.physd.2014.01.001. · Zbl 1288.34052
[33] J. Moehlis, E. Shea-Brown, and H. Rabitz, {\it Optimal inputs for phase models of spiking neurons}, J. Comput. Nonlinear Dynam., 1 (2006), pp. 358-367, http://dx.doi.org/10.1115/1.2338654 doi:10.1115/1.2338654.
[34] C. Morris and H. Lecar, {\it Voltage oscillations in the barnacle giant muscle fiber}, Biophys. J., 35 (1981), pp. 193-213, http://dx.doi.org/10.1016/S0006-3495(81)84782-0 doi:10.1016/S0006-3495(81)84782-0.
[35] A. Nabi, M. Mirzadeh, F. Gibou, and J. Moehlis, {\it Minimum energy desynchronizing control for coupled neurons}, J. Comput. Neurosci., 34 (2013), pp. 259-271, http://dx.doi.org/10.1007/s10827-012-0419-3 doi:10.1007/s10827-012-0419-3. · Zbl 1276.92017
[36] S. Osher and C.-W. Shu, {\it High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations}, SIAM J. Numer. Anal., 28 (1991), pp. 907-922, http://dx.doi.org/10.1137/0728049 doi:10.1137/0728049. · Zbl 0736.65066
[37] H. M. Osinga and J. Moehlis, {\it Continuation-based computation of global isochrons}, SIAM J. Appl. Dyn. Syst., 9 (2010), pp. 1201-1228, http://dx.doi.org/10.1137/090777244 doi:10.1137/090777244. · Zbl 1232.37014
[38] J. Qian, Y.-T. Zhang, and H.-K. Zhao, {\it A fast sweeping method for static convex Hamilton-Jacobi equations}, J. Sci. Comput., 31 (2007), pp. 237-271, http://dx.doi.org/10.1007/s10915-006-9124-6 doi:10.1007/s10915-006-9124-6. · Zbl 1115.70005
[39] J. Rinzel and G. B. Ermentrout, {\it Analysis of neural excitability and oscillations}, in Methods in Neuronal Modeling, C. Koch and I. Segev, eds., MIT Press, Cambridge, MA, 1989, pp. 135-169.
[40] J. A. Sethian, {\it A fast marching level set method for monotonically advancing fronts}, Proc. Natl. Acad. Sci. USA, 93 (1996), pp. 1591-1595, http://www.pnas.org/content/93/4/1591.abstract. · Zbl 0852.65055
[41] J. A. Sethian and A. Vladimirsky, {\it Ordered upwind methods for static Hamilton-Jacobi equations}, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 11069-11074, http://dx.doi.org/10.1073/pnas.201222998 doi:10.1073/pnas.201222998. · Zbl 1002.65112
[42] J. A. Sethian and A. Vladimirsky, {\it Ordered upwind methods for static Hamilton-Jacobi equations: Theory and algorithms}, SIAM J. Numer. Anal., 41 (2003), pp. 325-363, http://dx.doi.org/10.1137/S0036142901392742 doi:10.1137/ S0036142901392742. · Zbl 1040.65088
[43] P. A. Tass, {\it Phase Resetting in Medicine and Biology}, Springer, New York, 1999. · Zbl 0935.92014
[44] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, {\it Fast sweeping algorithms for a class of Hamilton-Jacobi equations}, SIAM J. Numer. Anal., 41 (2003), pp. 673-694, http://dx.doi.org/10.1137/S0036142901396533 doi:10.1137/ S0036142901396533. · Zbl 1049.35020
[45] J. N. Tsitsiklis, {\it Efficient algorithms for globally optimal trajectories}, IEEE Trans. Automat. Control, 40 (1995), pp. 1528-1538. · Zbl 0831.93028
[46] S. Wiggins, {\it Normally Hyperbolic Invariant Manifolds in Dynamical Systems}, Springer, New York, 1994. · Zbl 0812.58001
[47] C. J. Wilson and J. C. Callaway, {\it Coupled oscillator model of the dopaminergic neuron of the substantia nigra}, J. Neurophysiol., 83 (2000), pp. 3084-3100, http://www.ncbi.nlm.nih.gov/pubmed/10805703 PubMed:10805703.
[48] D. Wilson and J. Moehlis, {\it Optimal chaotic desynchronization for neural populations}, SIAM J. Appl. Dyn. Syst., 13 (2014), pp. 276-305, http://epubs.siam.org/doi/abs/10.1137/120901702 doi:10.1137/120901702. · Zbl 1301.92010
[49] A. Winfree, {\it Patterns of phase compromise in biological cycles}, J. Math. Biol., 95 (1974), http://link.springer.com/article/10.1007/BF02339491 doi:10.1007/ BF02339491. · Zbl 0402.92004
[50] A. Winfree, {\it The Geometry of Biological Time}, 2nd ed., Springer, New York, 2001. · Zbl 1014.92001
[51] Y.-T. Zhang, H.-K. Zhao, and J. Qian, {\it High order fast sweeping methods for static Hamilton-Jacobi equations}, J. Sci. Comput., 29 (2005), pp. 25-56, http://dx.doi.org/10.1007/s10915-005-9014-3 doi:10.1007/s10915-005-9014-3. · Zbl 1149.70302
[52] H. Zhao, {\it A fast sweeping method for eikonal equations}, Math. Comp., 74 (2004), pp. 603-627. · Zbl 1070.65113
[53] H. Zhao, {\it Parallel implementations of the fast sweeping method}, J. Comput. Math., 25 (2007), pp. 421-429.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.