×

Control of pendulum tracking (including swinging up) of IPC system using zeroing-gradient method. (English) Zbl 1374.93314

Summary: The pendulum control of the inverted-pendulum-on-a-cart (IPC) system is one of the most important issues in nonlinear control theory and has been widely investigated. Nevertheless, the control of pendulum tracking and swinging up has often been addressed separately. In this paper, by combining the zeroing dynamics and the conventional gradient dynamics, two concise zeroing-gradient (ZG) controllers (termed, z2g0 controller and z2g1 controller, respectively) are constructed for the IPC system. Importantly, the proposed z2g1 controller not only realizes the simultaneous control of pendulum swinging up and pendulum angle tracking, but also solves the singularity problem elegantly without using any switching strategy. Besides, the ZG method is compared with the optimal control method and the backstepping method. The theoretical analyses about the convergence performance of z2g0 and z2g1 controllers are further presented. Moreover, the boundedness of both control input \(u\) and its derivative \(\dot{u}\) of the z2g1 controller is proved. Three illustrative examples are carried out to demonstrate the tracking performance of z2g0 and z2g1 controllers for the pendulum tracking control. In particular, the efficacy and superiority of z2g1 controller for the control of pendulum tracking (including swinging up) of the IPC system in conquering the singularity problem are substantiated by comparative results. Furthermore, this paper investigates the robustness of the proposed ZG controllers (as well as the ZG design method) in the situations of time delay and disturbance.

MSC:

93D20 Asymptotic stability in control theory
70Q05 Control of mechanical systems
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Khalil, H.K.: Nonlinear Control. Prentice-Hall, New Jersey (2014)
[2] Zak, S.H.: Systems and Control. Oxford University Press, New York (2003)
[3] Na, J., Herrmann, G.: Online adaptive approximate optimal tracking control with simplified dual approximation structure for continuous-time unknown nonlinear systems. IEEE CAA J. Autom. Sin. 1, 412-422 (2014) · doi:10.1109/JAS.2014.7004668
[4] Yang, X., Wu, Z., Cao, J.: Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn. 73, 2313-2327 (2013) · Zbl 1281.34100 · doi:10.1007/s11071-013-0942-4
[5] Tan, M., Tian, W.: Finite-time stabilization and synchronization of complex dynamical networks with nonidentical nodes of different dimensions. Nonlinear Dyn. 79, 731-741 (2015) · Zbl 1331.93010 · doi:10.1007/s11071-014-1699-0
[6] Wang, X., Zhang, X., Ma, C.: Modified projective synchronization of fractional-order chaotic systems via active sliding mode control. Nonlinear Dyn. 69, 511-517 (2012) · Zbl 1253.93023 · doi:10.1007/s11071-011-0282-1
[7] Lv, Y., Na, J., Yang, Q., Wu, X., Guo, Y.: Online adaptive optimal control for continuous-time nonlinear systems with completely unknown dynamics. Int. J. Control 89, 99-112 (2016) · Zbl 1332.93174 · doi:10.1080/00207179.2015.1060362
[8] Ma, J., Xu, Y., Ren, G., Wang, C.: Prediction for breakup of spiral wave in a regular neuronal network. Nonlinear Dyn. 84, 497-509 (2016) · doi:10.1007/s11071-015-2502-6
[9] Lv, M., Wang, C., Ren, G., Ma, J., Song, X.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479-1490 (2016) · doi:10.1007/s11071-016-2773-6
[10] Ma, J., Wu, X., Chu, R., Zhang, L.: Selection of multi-scroll attractors in Jerk circuits and their verification using Pspice. Nonlinear Dyn. 76, 1951-1962 (2014) · doi:10.1007/s11071-014-1260-1
[11] Yang, C., Li, Z., Cui, R., Xu, B.: Neural network-based motion control of underactuated wheeled inverted pendulum models. IEEE Trans. Neural Netw. Learn. Syst. 25, 2004-2016 (2014) · doi:10.1109/TNNLS.2014.2302475
[12] Yang, C., Li, Z., Li, J.: Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models. IEEE Trans. Cybern. 43, 24-36 (2013) · doi:10.1109/TSMCB.2012.2198813
[13] Yang, R., Peng, Y., Song, Y.: Stability and Hopf bifurcation in an inverted pendulum with delayed feedback control. Nonlinear Dyn. 73, 737-749 (2013) · Zbl 1281.34104 · doi:10.1007/s11071-013-0827-6
[14] Ibanez, C.A., Frias, O.G., Castanon, M.S.: Lyapunov-based controller for the inverted pendulum cart system. Nonlinear Dyn. 40, 367-374 (2005) · Zbl 1094.70016 · doi:10.1007/s11071-005-7290-y
[15] Aguilar-Ibanez, C., Suarez-Castanon, M.S., Cruz-Cortes, N.: Output feedback stabilization of the inverted pendulum system: a Lyapunov approach. Nonlinear Dyn. 70, 767-777 (2012) · Zbl 1267.93137 · doi:10.1007/s11071-012-0493-0
[16] Ibanez, C.A., Frias, O.G.: Controlling the inverted pendulum by means of a nested saturation function. Nonlinear Dyn. 53, 273-280 (2008) · Zbl 1170.70389 · doi:10.1007/s11071-007-9224-3
[17] Adhikary, N., Mahanta, C.: Integral backstepping sliding mode control for underactuated systems: Swing-up and stabilization of the cart-pendulum system. ISA Trans. 52, 870-880 (2013) · doi:10.1016/j.isatra.2013.07.012
[18] Zhang, X.-L., Fan, H.-M., Zang, J.-Y., Zhao, L., Hao, S.: Nonlinear control of triple inverted pendulum based on GA-PIDNN. Nonlinear Dyn. 79, 1185-1194 (2015) · doi:10.1007/s11071-014-1735-0
[19] Yoshida, K., Sekikawa, M., Hosomi, K.: Nonlinear analysis on purely mechanical stabilization of a wheeled inverted pendulum on a slope. Nonlinear Dyn. 83, 905-917 (2016) · Zbl 1349.70040 · doi:10.1007/s11071-015-2376-7
[20] Zhou, Y., Wang, Z.: Robust motion control of a two-wheeled inverted pendulum with an input delay based on optimal integral sliding mode manifold. Nonlinear Dyn. 85, 2065-2074 (2016) · doi:10.1007/s11071-016-2811-4
[21] Semenov, M.E., Solovyov, A.M., Meleshenko, P.A.: Elastic inverted pendulum with backlash in suspension: stabilization problem. Nonlinear Dyn. 82, 677-688 (2015) · doi:10.1007/s11071-015-2186-y
[22] Udwadia, F.E., Koganti, P.B.: Dynamics and control of a multi-body planar pendulum. Nonlinear Dyn. 81, 845-866 (2015) · Zbl 1430.70023 · doi:10.1007/s11071-015-2034-0
[23] Yang, J.-H., Shim, S.-Y., Seo, J.-H., Lee, Y.-S.: Swing-up control for an inverted pendulum with restricted cart rail length. Int. J. Control Autom. Syst. 7, 674-680 (2009) · doi:10.1007/s12555-009-0419-x
[24] Kassem, A.H.: Swing-up control of inverted pendulum. J. Eng. Appl. Sci. 52, 1163-1178 (2005)
[25] Angeli, D.: Almost global stabilization of the inverted pendulum via continuous state feedback. Automatica 37, 1103-1108 (2001) · Zbl 0980.93064 · doi:10.1016/S0005-1098(01)00064-4
[26] Srinivasan, B., Huguenin, P., Bonvin, D.: Global stabilization of an inverted pendulum-control strategy and experimental verification. Automatica 45, 265-269 (2009) · Zbl 1154.93419 · doi:10.1016/j.automatica.2008.07.004
[27] Wei, E., Li, T., Li, J., Hu, Y., Li, Q.: Neural network-based adaptive dynamic surface control for inverted pendulum system. Adv. Intell. Sys. Comput. 215, 695-704 (2014)
[28] Dušek, F., Honc, D., Sharma, K.R., Havlíček, L.: Inverted pendulum optimal control based on first principle model. Adv. Intell. Sys. Comput. 466, 63-74 (2016)
[29] Zhang, Y., Yu, X., Yin, Y., Peng, C., Fan, Z.: Singularity-conquering ZG controllers of z2g1 type for tracking control of the IPC system. Int. J. Control 87, 1729-1746 (2013) · Zbl 1317.93198 · doi:10.1080/00207179.2014.883648
[30] Yi, J., Yubazaki, N.: Stabilization fuzzy control of inverted pendulum systems. Artif. Intell. Eng. 14, 153-163 (2000) · doi:10.1016/S0954-1810(00)00007-8
[31] Chen, S.-Y., Yu, F.-M., Chung, H.-Y.: Decoupled fuzzy controller design with single-input fuzzy logic. Fuzzy Sets Syst. 129, 335-342 (2002) · Zbl 0995.93513 · doi:10.1016/S0165-0114(01)00130-0
[32] Mazenc, F., Praly, L.: Adding integrations, saturated controls, and stabilisation of feedforward systems. IEEE Trans. Autom. Control 41, 1559-1578 (1996) · Zbl 0865.93049 · doi:10.1109/9.543995
[33] Åström, K.J., Furuta, K.: Swinging up a pendulum by energy control. Automatica 36, 287-295 (2000) · Zbl 0941.93543 · doi:10.1016/S0005-1098(99)00140-5
[34] Zhang, Y., Guo, D.: Zhang Functions and Various Models. Springer, Berlin (2015) · Zbl 1339.65002 · doi:10.1007/978-3-662-47334-4
[35] Zhang, Y., Xiao, L., Xiao, Z., Mao, M.: Zeroing Dynamics, Gradient Dynamics, and Newton Iterations. CRC Press, Florida (2015) · Zbl 1366.37003 · doi:10.1201/b19216
[36] Zhang, Y., Li, F., Yang, Y., Li, Z.: Different Zhang functions leading to different Zhang-dynamics models illustrated via time-varying reciprocal solving. Appl. Math. Model. 36, 4502-4511 (2012) · Zbl 1252.65222 · doi:10.1016/j.apm.2011.11.081
[37] Zhang, Y., Ke, Z., Xu, P., Yi, C.: Time-varying square roots finding via Zhang dynamics versus gradient dynamics and the former’s link and new explanation to Newton-Raphson iteration. Inf. Process. Lett. 110, 1103-1109 (2010) · Zbl 1380.65086 · doi:10.1016/j.ipl.2010.09.013
[38] Chen, K.: Recurrent implicit dynamics for online matrix inversion. Appl. Math. Comput. 219, 10218-10224 (2013) · Zbl 1293.65040
[39] Li, S., Li, Y.: Nonlinearly activated neural network for solving time-varying complex Sylvester equation. IEEE Trans. Cybern. 44, 1397-1407 (2014) · doi:10.1109/TCYB.2013.2285166
[40] Miao, P., Shen, Y., Huang, Y., Wang, Y.-W.: Solving time-varying quadratic programs based on finite-time Zhang neural networks and their application to robot tracking. Neural Comput. Appl. 26, 693-703 (2015) · doi:10.1007/s00521-014-1744-4
[41] Zhang, Y., Yan, X., Liao, B., Liao, B., Zhang, Y., Ding, Y.: Z-type control of populations for Lotka-Volterra model with exponential convergence. Math. Biosci. 272, 15-23 (2016) · Zbl 1369.92108 · doi:10.1016/j.mbs.2015.11.009
[42] Guo, D., Nie, Z., Yan, L.: Theoretical analysis, numerical verification and geometrical representation of new three-step DTZD algorithm for time-varying nonlinear equations solving. Neurocomputing 214, 516-526 (2016) · doi:10.1016/j.neucom.2016.06.032
[43] Yi, C., Chen, Y., Lu, Z.: Improved gradient-based neural networks for online solution of Lyapunov matrix equation. Inf. Process. Lett. 111, 780-786 (2011) · Zbl 1260.68353 · doi:10.1016/j.ipl.2011.05.010
[44] Zhang, Y., Chen, D., Jin, L., Zhang, Y., Yin, Y.: GD-aided IOL (input-output linearisation) controller for handling affine-form nonlinear system with loose condition on relative degree. Int. J. Control 89, 757-769 (2016) · Zbl 1338.93115 · doi:10.1080/00207179.2015.1099075
[45] Zhang, Y., Chen, D., Guo, D., Liao, B., Wang, Y.: On exponential convergence of nonlinear gradient dynamics system with application to square root finding. Nonlinear Dyn. 79, 983-1003 (2015) · Zbl 1345.65066 · doi:10.1007/s11071-014-1716-3
[46] Zhang, Y., Yi, C., Guo, D., Zheng, J.: Comparison on Zhang neural dynamics and gradient-based neural dynamics for online solution of nonlinear time-varying equation. Neural Comput. Appl. 20, 1-7 (2011) · doi:10.1007/s00521-010-0452-y
[47] Xiao, L., Lu, R.: Finite-time solution to nonlinear equation using recurrent neural dynamics with a specially-constructed activation function. Neurocomputing 151, 246-251 (2015) · doi:10.1016/j.neucom.2014.09.047
[48] Xiao, L.: A nonlinearly activated neural dynamics and its finite-time solution to time-varying nonlinear equation. Neurocomputing 173, 1983-1988 (2016) · doi:10.1016/j.neucom.2015.08.031
[49] Rudra, S., Barai, R.K.: Robust adaptive backstepping control of inverted pendulum on cart system. Int. J. Control Autom. 5, 13-26 (2012)
[50] Wang, J.-J.: Simulation studies of inverted pendulum based on PID controllers. Simul. Model. Pract. Theory 19, 440-449 (2011) · doi:10.1016/j.simpat.2010.08.003
[51] Wang, J.-J.: Stabilization and tracking control of X-Z inverted pendulum with sliding-mode control. ISA Trans. 51, 763-770 (2012) · doi:10.1016/j.isatra.2012.06.007
[52] Prasad, L.B., Tyagi, B., Gupta, H.O.: Optimal control of nonlinear inverted pendulum system using PID controller and LQR: performance analysis without and with disturbance input. Int. J. Autom. Comput. 11, 661-670 (2014) · doi:10.1007/s11633-014-0818-1
[53] Zhang, Y., Wang, J.: Recurrent neural networks for nonlinear output regulation. Automatica 37, 1161-1173 (2001) · Zbl 0981.93024 · doi:10.1016/S0005-1098(01)00092-9
[54] Zhang, Y., Zhang, Y., Yan, X., Qiu, B., Tan, H.: ZG stabilization and tracking control for bilinear system of \[u\] u-integration type. In: Proceedings of the 27th Chinese Control and Decision Conference, pp. 1268-1273 (2015)
[55] Lewis, F.L., Vrabie, D.L., Syrmos, V.L.: Optimal Control, 3rd edn. Wiley, New Jersey (2012) · Zbl 1284.49001 · doi:10.1002/9781118122631
[56] Zhu, W.Q., Deng, M.L., Huang, Z.L.: Optimal bounded control of first-passage failure of quasi-integrable hamiltonian systems with wide-band random excitation. Nonlinear Dyn. 33, 189-207 (2003) · Zbl 1039.70019 · doi:10.1023/A:1026049216559
[57] Zhu, W.Q., Ying, Z.G., Soong, T.T.: Optimal nonlinear feedback control strategy for randomly excited structural systems. Nonlinear Dyn. 24, 31-51 (2001) · Zbl 0998.70022 · doi:10.1023/A:1026527404183
[58] Zhu, W.Q., Liu, Z.H.: Response of quasi-integrable Hamiltonian systems with delayed feedback bang-bang control. Nonlinear Dyn. 49, 31-47 (2007) · Zbl 1181.70045 · doi:10.1007/s11071-006-9101-5
[59] Cui, R., Guo, J., Mao, Z.: Adaptive backstepping control of wheeled inverted pendulums models. Nonlinear Dyn. 79, 501-511 (2015) · Zbl 1331.93108 · doi:10.1007/s11071-014-1682-9
[60] Ma, R., Zhao, J., Dimirovski, G.M.: Backstepping design for global robust stabilisation of switched nonlinear systems in lower triangular form. Int. J. Syst. Sci. 44, 615-624 (2013) · Zbl 1276.93068 · doi:10.1080/00207721.2011.617893
[61] Liu, X., Lin, Z.: On the backstepping design procedure for multiple input nonlinear systems. Int. J. Robust Nonlinear Control 22, 918-932 (2012) · Zbl 1274.93043 · doi:10.1002/rnc.1735
[62] Strang, G.: Linear Algebra and its Applications, 4th edn. Cengage Learning, Connecticut (2006) · Zbl 1329.15004
[63] Dragomir, S.S.: Some Gronwall Type Inequalities and Applications. Nova Science Publishers, New York (2003) · Zbl 1094.34001
[64] Anton, H., Rorres, C.: Elementary Linear Algebra, 10th edn. Wiley, New Jersey (2010) · Zbl 0615.15002
[65] Mathews, J.H., Fink, K.D.: Numerical Methods Using MATLAB. Prentice-Hall, New Jersey (2005)
[66] Griffiths, D.F., Higham, D.J.: Numerical Methods for Ordinary Differential Equations: Initial Value Problems. Springer, London (2010) · Zbl 1209.65070 · doi:10.1007/978-0-85729-148-6
[67] Taghia, J., Martin, R.: A frequency-domain adaptive line enhancer with step-size control based on mutual information for harmonic noise reduction. IEEE/ACM Trans. Audio Speech Lang. Process. 24, 1140-1154 (2016)
[68] Zavarehei, E., Vaseghi, S., Yan, Q.: Noisy speech enhancement using harmonic-noise model and codebook-based post-processing. IEEE Trans. Audio Speech Lang. Process. 15, 1194-1203 (2007) · doi:10.1109/TASL.2007.894516
[69] Liu, Z.H., Zhu, W.Q.: Stochastic Hopf bifurcation of quasi-integrable Hamiltonian systems with multi-time-delayed feedback control and wide-band noise excitations. Nonlinear Dyn. 69, 935-947 (2012) · Zbl 1253.93049 · doi:10.1007/s11071-011-0315-9
[70] Chen, L.C., Zhu, W.Q.: Stochastic averaging of strongly nonlinear oscillators with small fractional derivative damping under combined harmonic and white noise excitations. Nonlinear Dyn. 56, 231-241 (2009) · Zbl 1170.70372 · doi:10.1007/s11071-008-9395-6
[71] Liu, W.Y., Zhu, W.Q., Jia, W.T., Gu, X.D.: Stochastic stability of quasi-partially integrable and non-resonant Hamiltonian systems under parametric excitations of combined Gaussian and Poisson white noises. Nonlinear Dyn. 77, 1721-1735 (2014) · Zbl 1331.93216 · doi:10.1007/s11071-014-1413-2
[72] Tanaka, M., Katayama, T.: Robust fixed-lag smoother for linear systems including outliers in the system and observation noises. Int. J. Syst. Sci. 19, 2243-2259 (1988) · Zbl 0656.93078 · doi:10.1080/00207728808964116
[73] Shahnazi, R., Akbarzadeh, T.M.-R.: PI adaptive fuzzy control with large and fast disturbance rejection for a class of uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. 16, 187-197 (2008) · doi:10.1109/TFUZZ.2007.903320
[74] Wang, C., Chu, R., Ma, J.: Controlling a chaotic resonator by means of dynamic track control. Complexity 21, 370-378 (2015) · doi:10.1002/cplx.21572
[75] Song, X.-L., Jin, W.-Y., Ma, J.: Energy dependence on the electric activities of a neuron. Chin. Phys. B 24, 604-609 (2015)
[76] Slotine, J.-J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, New Jersey (1991) · Zbl 0753.93036
[77] Isidori, A.: Nonlinear Control Systems: An Introduction, 2nd edn. Springer, New York (1989) · Zbl 0569.93034 · doi:10.1007/978-3-662-02581-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.