×

Finite-time stabilization and synchronization of complex dynamical networks with nonidentical nodes of different dimensions. (English) Zbl 1331.93010

Summary: A class of complex dynamical networks, in which the nodes have different state dimensions, is investigated in this paper. Since the networks constructed by nonidentical nodes with different state dimensions may exhibit different dynamical behavior, the appropriate control strategies are proposed for the stabilization and synchronization of such complex networks. By employing suitable controllers, sufficient conditions for finite-time stabilization and synchronization are derived based on the finite-time stability theory. It is noticed that the coupling configuration matrix is not necessary to be symmetric or irreducible, and the inner coupling matrix need not be symmetric. Finally, numerical examples are presented to show the effectiveness of the proposed control methods.

MSC:

93A15 Large-scale systems
93C23 Control/observation systems governed by functional-differential equations
34D06 Synchronization of solutions to ordinary differential equations
34K45 Functional-differential equations with impulses
93D99 Stability of control systems
Full Text: DOI

References:

[1] Wang, X.: Complex networks: topology, dynamics and synchronization. Int. J. Bifurcation Chaos 12, 885-916 (2002) · Zbl 1044.37561 · doi:10.1142/S0218127402004802
[2] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.: Complex networks: structure and dynamics. Phys. Rep. 424, 175-308 (2006) · Zbl 1371.82002 · doi:10.1016/j.physrep.2005.10.009
[3] Duan, Z., Wang, J., Chen, G., Lin, H.: Stability analysis and decentralized control of a class of complex dynamical networks. Automatica 44, 1028-1035 (2008) · Zbl 1283.93017 · doi:10.1016/j.automatica.2007.08.005
[4] Tan, M., Zhang, Y.: New sufficient conditions for global asymptotic stability of Cohen-Grossberg neural networks with time-varying delays. Nonlinear Anal.: Real World Appl. 10, 2139-2145 (2009) · Zbl 1163.92307 · doi:10.1016/j.nonrwa.2008.03.022
[5] Wang, Z., Zhang, H.: Synchronization stability in complex interconnected neural networks with nonsymmetric coupling. Neurocomputing 108, 84-92 (2013) · doi:10.1016/j.neucom.2012.11.014
[6] Zheng, C., Shan, Q., Zhang, H.: On stabilization of stochastic Cohen-Grossberg neural networks with mode-dependent mixed time-delays and markovian switching. IEEE Trans. Neural Netw. Learn. Syst. 24, 800-811 (2013) · doi:10.1109/TNNLS.2013.2244613
[7] Zhang, Y., Guo, D., Li, Z.: Common nature of learning between back-propagation and Hopfield-type neural networks for generalized matrix inversion with simplified models. IEEE Trans. Neural Netw. Learn. Syst. 24, 579-592 (2013) · doi:10.1109/TNNLS.2013.2238555
[8] Huang, T., Yang, Z., Li, C.: Theory and applications of complex networks. Math. Probl. Eng. 315059 (2014)
[9] Chen, J., Lu, J., Zhou, J.: Topology identification of complex networks from noisy time series using ROC curve analysis. Nonlinear Dyn. 75, 761-768 (2014) · doi:10.1007/s11071-013-1102-6
[10] Anzo, A., Barajas-Ramirez, J.: Synchronization in complex networks under structural evolution. J. Frankl. Inst. 351, 358-372 (2014) · Zbl 1293.93145 · doi:10.1016/j.jfranklin.2013.09.001
[11] Li, X., Wang, X., Chen, G.: Pinning a complex dynamical network to its equilibrium. IEEE. Trans. Circuits Syst. I 51, 2074-2087 (2004) · Zbl 1374.94915 · doi:10.1109/TCSI.2004.835655
[12] Li, C., Feng, G., Liao, X.: Stabilization of nonlinear systems via periodically intermittent control. IEEE Trans. Circuits Syst. II 54, 1019-1023 (2007) · doi:10.1109/TCSII.2007.903205
[13] Lee, T., Park, J., Ji, D., Kwon, O., Lee, S.: Guaranteed cost synchronization of a complex dynamical network via dynamic feedback control. Appl. Math. Comput. 218, 6469-6481 (2012) · Zbl 1238.93070 · doi:10.1016/j.amc.2011.11.112
[14] Du, H., Shi, P., Lu, N.: Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control. Nonlinear Anal.: Real World Appl. 14, 1182-1190 (2013) · Zbl 1258.93060 · doi:10.1016/j.nonrwa.2012.09.009
[15] Zheng, Z., Tan, M., Wang, Q.: Hybrid synchronization of two delayed systems with uncertain parameters. Adv. Neural Netw. 7367, 285-292 (2012)
[16] Wu, Z., Fu, X.: Cluster projective synchronization between community networks with nonidentical nodes. Phys. A 391, 6190-6198 (2012) · doi:10.1016/j.physa.2012.06.070
[17] Wu, X., Lu, H.: Generalized function projective (lag, anticipated and complete) synchronization between two different coupled complex with nonidentical nodes. Commun. Nonlinear Sci. Numer. Simul. 17, 3005-3021 (2012) · Zbl 1243.93039 · doi:10.1016/j.cnsns.2011.10.035
[18] Li, K., He, E., Zeng, Z., Chi, K.: Generalized projective synchronization of two coupled complex networks of different sizes. Chin. Phys. B. 22, 070504 (2013) · doi:10.1088/1674-1056/22/7/070504
[19] Zhao, J., Hill, D., Liu, T.: Synchronization of dynamical networks with nonidentical nodes: criteria and control. IEEE. Trans. Circuits Syst.I 58, 584-594 (2011) · Zbl 1468.34082 · doi:10.1109/TCSI.2010.2072330
[20] Cai, S., He, Q., Hao, J., Liu, Z.: Exponential synchronization of complex networks with nonidentical time-delayed dynamical nodes. Phys. Lett. A 374, 2539-2550 (2010) · Zbl 1236.05185
[21] Pereira, T., Eroglu, D., Bagci, G.: Connectivity-driven coherence in complex networks. Phys. Rev. Lett. 110, 234103 (2013) · doi:10.1103/PhysRevLett.110.234103
[22] Belykh, I., Belykh, V., Nevidin, K., Hasler, M.: Persistent clusters in lattices of coupled nonidentical chaotic systems. Chaos 13, 165-178 (2003) · Zbl 1080.37525 · doi:10.1063/1.1514202
[23] Du, H.: Function projective synchronization in drive-response dynamical networks with nonidentical nodes. Chaos Solitons Fractals 44, 510-514 (2011) · Zbl 1223.93041 · doi:10.1016/j.chaos.2011.04.002
[24] Wei, Z., Wang, Z.: Chaotic behavior and modified function projective synchronization of a simple system with one stable equilibrium. Kybernetika 49, 359-374 (2013) · Zbl 1276.34043
[25] Wei, Z., Moroz, I., Liu, A.: Degenerate Hopf bifurcations, hidden attractors and control in the extended Sprott E system with only one stable equilibrium. Turk. J. Math. 38, 672-687 (2014) · Zbl 1401.34054 · doi:10.3906/mat-1305-64
[26] Tanaka, K., Wang, H.: Fuzzy control of chaotic systems using LIMs: regulation, synchronization and chaos model following. IEEE World Congr. Fuzzy Syst. Proc. 1, 434-439 (1988)
[27] Hu, M., Xu, Z.: Adaptive feedback controller for projective synchronization. Nonlinear Anal.: RWA 9, 1253-1260 (2008) · Zbl 1144.93364 · doi:10.1016/j.nonrwa.2007.03.005
[28] Lu, W., Li, X., Rong, Z.: Global stabilization of complex networks with digraph topologies via a local pinning algorithm. Automatica 46, 116-121 (2010) · Zbl 1214.93090 · doi:10.1016/j.automatica.2009.10.006
[29] Wu, W., Zhou, W., Chen, Q.: Cluster synchronization of linearly coupled complex networks under pinning control. IEEE Trans. Circuits Syst. I 56, 829-839 (2009) · Zbl 1468.93140 · doi:10.1109/TCSI.2008.2003373
[30] Zhou, J., Xiang, L., Liu, Z.: Synchronization in complex delayed dynamical networks via impulsive control. Phys. A 384, 684-692 (2007) · doi:10.1016/j.physa.2007.05.060
[31] Zhang, Q., Lu, J., Zhao, J.: Impulsive synchronization of general continuous and discrete-time complex dynamical networks. Commun. Nonlinear Sci. Numer. Simul. 15, 1063-1070 (2010) · Zbl 1221.93107 · doi:10.1016/j.cnsns.2009.05.048
[32] Mei, J., Jiang, M., Xu, W., Wang, B.: Finite-time synchronization control of complex dynamical networks with time delay. Commun. Nonlinear Sci. Numer. Simul. 18, 2462-2478 (2013) · Zbl 1311.34157
[33] Aghababa, M., Khanmohammadi, S., Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl. Math. Model 35, 3080-3091 (2011) · Zbl 1219.93023 · doi:10.1016/j.apm.2010.12.020
[34] Wei, Z.: Synchronization of coupled nonidentical fractional-order hyperchaotic systems. Discret. Dyn. Nat. Soc. 2011, 430724 (2011) · Zbl 1235.93059 · doi:10.1155/2011/430724
[35] Moulay, E., Dambrine, M., Yeganefar, N., Perruquetti, W.: Finite-time stability and stabilization of time-delay systems. Syst. Control Lett. 57, 561-566 (2008) · Zbl 1140.93447 · doi:10.1016/j.sysconle.2007.12.002
[36] Sanjay, P., Dennis, S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38, 751-766 (2000) · Zbl 0945.34039 · doi:10.1137/S0363012997321358
[37] Yang, X., Cao, J.: Finite-time stochastic synchronization of complex networks. Appl. Math. Model. 34, 3631-3641 (2010) · Zbl 1201.37118 · doi:10.1016/j.apm.2010.03.012
[38] Shen, J., Cao, J.: Finite-time synchronization of coupled neural networks via discontinuous controllers. Cogn. Neurodyn. 5, 373-385 (2011) · doi:10.1007/s11571-011-9163-z
[39] Sun, Y., Li, W., Ruan, J.: Finite-time generalized outer synchronization between two different complex networks. Commun. Theor. Phys. 58, 697-703 (2012) · Zbl 1264.05128 · doi:10.1088/0253-6102/58/5/13
[40] Yang, X., Wu, Z., Cao, J.: Finite-time synchronization of complex networks with nonidentical discontinuous nodes. Nonlinear Dyn. 73, 2313-2327 (2013) · Zbl 1281.34100 · doi:10.1007/s11071-013-0942-4
[41] Wang, Y., Fan, Y., Wang, Q., Zhang, Y.: Stabilization and synchronization of complex dynamical networks with different dynamics of nodes via decentralized controllers. IEEE Trans. Circuits Syst. I 59, 1786-1795 (2012) · Zbl 1468.93139 · doi:10.1109/TCSI.2011.2180439
[42] Fan, Y., Wang, Y., Zhang, Y., Wang, Q.: The synchronization of complex dynamical networks with similar nodes and coupling time-delay. Appl. Math. Comput. 219, 6719-6728 (2013) · Zbl 1288.34064 · doi:10.1016/j.amc.2013.01.013
[43] Dai, H., Jia, L., Zhang, Y.: Adaptive generalized matrix projective lag synchronization between two different complex networks with nonidentical nodes and different dimensions. Chin. Phys. B. 21, 120508 (2012) · doi:10.1088/1674-1056/21/12/120508
[44] Dai, H., Si, G., Zhang, Y.: Adaptive generalized function matrix projective lag synchronization of uncertain complex dynamical networks with different dimensions. Nonlinear Dyn. 74, 629-648 (2013) · Zbl 1279.93067 · doi:10.1007/s11071-013-0994-5
[45] Wei, Z., Tang, Y., Chen, H., Pehlivan, I.: Adaptive reduced-order function projective synchronization and circuit design of hyperchaotic DLE with no equilibria. Optoelectron. Adv. Mat. 7, 984-999 (2013)
[46] Hardy, G., Littlewood, J., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1952) · Zbl 0047.05302
[47] Liu, H., Shen, Y., Zhao, X.: Finite-time stabilization and boundedness of switched linear system under state-dependent switching. J. Frankl. I 350, 541-555 (2013) · Zbl 1268.93078 · doi:10.1016/j.jfranklin.2012.12.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.