×

Matrix-valued Gegenbauer-type polynomials. (English) Zbl 1384.33025

Matrix-valued Gegenbauer-type polynomials are investigated. The main results of the paper are stated in Sections 2 and 3. In Section 2 the matrix-valued weight functions \(W^{(\nu)}(x)\), which are analogues of the weight function for the Gegenbauer polynomials \(C^{(\nu)}_n(x)\) are introduced: \(W^{(\nu)}(x)= (1-x^2)^{\nu-1/2}W^{(\nu)}_{\mathrm{pol}}(x)\), where \[ \left(W^{(\nu)}_{\mathrm{pol}}(x)\right)_{m,n}=\sum_{k=\max\{0,m+n-2\ell\}}^m \alpha_k^{(\nu)}(m,n)C^{(\nu)}_{m+n-2k}(x), \]
\[ \alpha_k^{(\nu)}(m,n)=(-1)^m\frac{m!n!(m+n-2k)!}{k!(2\nu)_{m+n-2k}(\nu)_{m+n-k}} \frac{(\nu)_{m-k}(\nu)_{n-k}}{(m-k)!(n-k)!}\frac{m+n-2k+\nu}{m+n-k+\nu} \]
\[ \times (2\ell-m)!(n-2\ell)_{m-k}(-2\ell-\nu)_{k}\frac{2\ell+\nu}{2\ell!}, \] \(m,n\in\{0,1,\ldots,2\ell\}\) and \(n\geq m\). If \(m\geq n\) then \((W^{(\nu)}_{\mathrm{pol}}(x))_{m,n}=(W^{(\nu)}_{\mathrm{pol}}(x))_{n,m}\). In Theorem 2.2 the LDU-decomposition of the weight \(W^{(\nu)}(x)\) is explicitly given in terms of polynomials \(C^{(\nu)}_n(x)\). Two symmetric matrix-valued differential operators with respect to the weight \(W^{(\nu)}(x)\) are introduced in Theorem 2.3. In Theorem 2.4 a matrix-valued Pearson equations for the matrix weights \(W^{(\nu)}(x)\) are obtained. In Section 3 the properties of \(P^{(\nu)}_n(x)\) – matrix-valued orthogonal polynomials with respect to the weight \(W^{(\nu)}(x)\), which are called the matrix-valued Gegenbauer-type polynomials, are investigated. In Theorem 3.1 a Rodrigues formula for \(P^{(\nu)}_n(x)\) is established and the squared norm for it is found. Theorem 3.2 states that \(P^{(\nu)}_n(x)\) are eigenfunctions of the symmetric matrix-valued differential operators. The three-term recurrence relation for \(P^{(\nu)}_n(x)\) is obtained explicitly in Theorem 3.3. In Theorem 3.4 an explicit expression for the matrix entries of the matrix-valued polynomials \(P^{(\nu)}_n(x)\) in terms of scalar-valued Gegenbauer and Racah polynomials is given. In Section 4 and Appendices A, B and C statements of Sections 2 are proved and statements of Section 3 are proved in Section 5.

MSC:

33C47 Other special orthogonal polynomials and functions
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33E30 Other functions coming from differential, difference and integral equations

References:

[1] Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1992) · Zbl 0171.38503
[2] Aptekarev, A.I., Nikishin, E.M.: The scattering problem for a discrete Sturm-Liouville operator. Mat. USSR Sbornik 49, 325-355 (1984) · Zbl 0557.34017 · doi:10.1070/SM1984v049n02ABEH002713
[3] Aldenhoven, N., Koelink, E., Román, P.: Matrix-valued orthogonal polynomials related to the quantum analogue of \[(\text{ SU }(2) \times \text{ SU }(2), \text{ diag })\](SU(2)×SU(2),diag). Ramanujan J. Math. 43, 243-311 (2017) · Zbl 1433.17013 · doi:10.1007/s11139-016-9788-y
[4] Álvarez-Fernández, C., Ariznabarreta, G., García-Ardila, J.C., Mañas, M., Marcellán, F.: Christoffel transformations for matrix orthogonal polynomials in the real line and the non-Abelian 2D Toda lattice hierarchy. Int. Math. Res. Not. 2017, 1285-1341 (2017) · Zbl 1405.42047
[5] Andrews, G.E., Askey, R.A., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999) · Zbl 0920.33001 · doi:10.1017/CBO9781107325937
[6] Ariznabarreta, G., Mañas, M.: Matrix orthogonal Laurent polynomials on the unit circle and Toda type integrable systems. Adv. Math. 264, 396-463 (2014) · Zbl 1305.33018 · doi:10.1016/j.aim.2014.06.019
[7] Bailey, W.N.: Generalized Hypergeometric Series. Hafner, New York (1964) · Zbl 0011.02303
[8] Berezanskii, J.M: Expansions in Eigenfunctions of Selfadjoint Operators, Translations of Mathematical Monographs. AMS (1968) · Zbl 0157.16601
[9] Cagliero, L., Koornwinder, T.H.: Explicit matrix inverses for lower triangular matrices with entries involving Jacobi polynomials. J. Approx. Theory 193, 20-38 (2015) · Zbl 1318.33013 · doi:10.1016/j.jat.2014.03.016
[10] Cantero, M.J., Moral, L., Velázquez, L.: Matrix orthogonal polynomials whose derivatives are also orthogonal. J. Approx. Theory 146, 174-211 (2007) · Zbl 1112.42012 · doi:10.1016/j.jat.2006.10.005
[11] Casper, W.R.: Elementary examples of solutions to Bochner’s problem for matrix differential operators. arXiv:1509.03674v2 · Zbl 06859910
[12] Castro, M., Grünbaum, F.A.: The Darboux process and time-and-band limiting for matrix orthogonal polynomials. Linear Alg. Appl. 487, 328-341 (2015) · Zbl 1326.33013 · doi:10.1016/j.laa.2015.09.012
[13] Damanik, D., Pushnitski, A., Simon, B.: The analytic theory of matrix orthogonal polynomials. Surv. Approx. Theory 4, 1-85 (2008) · Zbl 1193.42097
[14] Durán, A.J.: Generating orthogonal matrix polynomials satisfying second order differential equations from a trio of triangular matrices. J. Approx. Theory 161, 88-113 (2009) · Zbl 1184.42021 · doi:10.1016/j.jat.2008.08.003
[15] Durán, A.J., Grünbaum, F.A.: Orthogonal matrix polynomials satisfying second-order differential equations. Int. Math. Res. Not. 2004, 461-484 (2004) · Zbl 1073.33009 · doi:10.1155/S1073792804132583
[16] Durán, A.J., Van Assche, W.: Orthogonal matrix polynomials and higher-order recurrence relations. Linear Algebra Appl. 219, 261-280 (1995) · Zbl 0827.15027 · doi:10.1016/0024-3795(93)00218-O
[17] Gangolli, R., Varadarajan, V.S: Harmonic Analysis of Spherical Functions on Real Reductive Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol 101. Springer, Berlin (1988) · Zbl 0675.43004
[18] Gekhtman, M.: Hamiltonian structure of non-abelian Toda lattice. Let. Math. Phys. 46, 189-205 (1998) · Zbl 0959.37052 · doi:10.1023/A:1007579806383
[19] Geronimo, J.S.: Scattering theory and matrix orthogonal polynomials on the real line. Circuits Syst. Signal Process. 1, 471-495 (1982) · Zbl 0506.15010 · doi:10.1007/BF01599024
[20] Groenevelt, W., Ismail, M.E.H., Koelink, E.: Spectral theory and matrix-valued orthogonal polynomials. Adv. Math. 244, 91-105 (2013) · Zbl 1286.42035 · doi:10.1016/j.aim.2013.04.025
[21] Grünbaum, FA; Ban, EP (ed.); Kolk, JAC (ed.), The Darboux process and a noncommutative bispectral problem: some explorations and challenges, No. 292, 161-177 (2011), Boston · Zbl 1263.34022 · doi:10.1007/978-0-8176-8244-6_6
[22] Grünbaum, F.A., Tirao, J.: The algebra of differential operators associated to a weight matrix. Integral Equ. Oper. Theory 58, 449-475 (2007) · Zbl 1120.33008 · doi:10.1007/s00020-007-1517-x
[23] Grünbaum, F.A., Pacharoni, I., Tirao, J.: Matrix valued spherical functions associated to the complex projective plane. J. Funct. Anal. 188, 350-441 (2002) · Zbl 0996.43013 · doi:10.1006/jfan.2001.3840
[24] Heckman, G., van Pruijssen, M.: Matrix valued orthogonal polynomials for Gelfand pairs of rank one. Tohoku Math. J. (2) 68, 407-437 (2016) · Zbl 1360.22019 · doi:10.2748/tmj/1474652266
[25] Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge (2009) · Zbl 1172.42008
[26] Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and their \[q\] q-Analogues. Springer, Berlin (2010) · Zbl 1200.33012 · doi:10.1007/978-3-642-05014-5
[27] Koekoek, R., Swarttouw, R.F: The Askey-scheme of hypergeometric orthogonal polynomials and its \[q\] q-analogue. http://aw.twi.tudelft.nl/ koekoek/askey.html. Report 98-17, Technical University Delft (1998) · Zbl 1433.17013
[28] Koelink, E., Román, P.: Orthogonal vs. non-orthogonal reducibility of matrix-valued measures. SIGMA 12, 008 (2016) · Zbl 1332.33028
[29] Koelink, E., van Pruijssen, M., Román, P.: Matrix valued orthogonal polynomials related to \[({{\rm SU}}(2)\times{{\rm SU}}(2),{{\rm diag}}\] SU(2)×SU(2),diag). Int. Math. Res. Not. 2012, 5673-5730 (2012) · Zbl 1263.33005 · doi:10.1093/imrn/rnr236
[30] Koelink, E., van Pruijssen, M., Román, P.: Matrix valued orthogonal polynomials related to \[(\text{ SU }(2)\times \text{ SU }(2),{{\rm diag}}\] SU(2)×SU(2),diag). Publ. RIMS Kyoto 49, 271-312 (2013) · Zbl 1275.33016 · doi:10.4171/PRIMS/106
[31] Koornwinder, T.H.: Matrix elements of irreducible representations of SU \[(2) \times \]× SU(2) and vector-valued orthogonal polynomials. SIAM J. Math. Anal. 16, 602-613 (1985) · Zbl 0581.22020 · doi:10.1137/0516044
[32] Koornwinder, TH; Baldoni, V. (ed.); Picardello, M. (ed.), Compact quantum groups and q-special functions, No. 311, 46-128 (1994), London · Zbl 0821.17015
[33] Krein, M.G.: Infinite J-matrices and a matrix moment problem. Dokl. Akad. Nauk SSSR 69, 125-128 (1949) · Zbl 0035.35904
[34] Krein, M.G.: Fundamental aspects of the representation theory of hermitian operators with deficiency index \[(m, m)\](m,m). AMS Transl. Ser. 2(97), 75-143 (1971) · Zbl 0258.47025
[35] Lance, E.C.: Hilbert \[C^\ast \]*-Modules. In: A Toolkit for Operator Algebraists, London Mathematical Society, Lecture Note Series, vol. 210. Cambridge University Press, Cambridge (1995) · Zbl 0822.46080
[36] Opdam, E.M.: Some applications of hypergeometric shift operators. Invent. Math. 98, 1-18 (1989) · Zbl 0696.33006 · doi:10.1007/BF01388841
[37] Pacharoni, I., Tirao, J.: Matrix valued orthogonal polynomials arising from the complex projective space. Constr. Approx. 25, 177-192 (2007) · Zbl 1132.33006 · doi:10.1007/s00365-005-0625-6
[38] Pacharoni, I., Zurrián, I.: Matrix Gegenbauer polynomials: the \[2\times 22\]×2 fundamental cases. Constr. Approx. 43, 253-271 (2016) · Zbl 1342.33025 · doi:10.1007/s00365-015-9301-7
[39] Pacharoni, I., Tirao, J., Zurrián, I.: Spherical functions associated to the three dimensional sphere. Ann. Mat. Pura Appl (4) 193, 1727-1778 (2014) · Zbl 1303.22004 · doi:10.1007/s10231-013-0354-6
[40] Rahman, M., Suslov, S.K.: The Pearson equation and the beta integrals. SIAM J. Math. Anal. 25, 646-693 (1994) · Zbl 0808.33002 · doi:10.1137/S003614109222874X
[41] Tirao, J.: The matrix-valued hypergeometric equation. Proc. Natl. Acad. Sci. USA 100, 8138-8141 (2003) · Zbl 1070.33015 · doi:10.1073/pnas.1337650100
[42] Tirao, J., Zurrián, I.: Reducibility of matrix weights. Ramanujan J. arXiv:1501.04059v4 · Zbl 1383.42024
[43] van Pruijssen, M.L.A.: Matrix valued orthogonal polynomials related to compact Gelfand pairs of rank one. Radboud Universiteit, Ph.D.-thesis (2012) · Zbl 0557.34017
[44] van Pruijssen, M.: Multiplicity free induced representations and orthogonal polynomials. Int. Math. Res. Not. doi:10.1093/imrn/rnw295 (2017) · Zbl 1406.33012
[45] Wilson, J.: Some hypergeometric orthogonal polynomials. SIAM J. Math. Anal. 11, 690-701 (1980) · Zbl 0454.33007 · doi:10.1137/0511064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.