×

Geometric properties of the Cassinian metric. (English) Zbl 1392.30005

In this article the authors study the Cassinian metric \(c_D\) which is defined in an arbitrary domain \(D\subsetneq \mathbb{R}^n\) by \[ c_D(x,y)=\sup_{p\in \partial D}\frac{|x-y|}{| x-p| | p-y|}. \] The distortion property of this metric under Möbius transformations of the unit ball has been studied already by Z. Ibragimov et al. [Bull. Malays. Math. Sci. Soc. (2) 40, No. 1, 361–372 (2017; Zbl 1366.30007)]. Thus in this paper one of the purposes is to prove the sharp distortion property of the Cassinian metric under Möbius maps from a punctured ball onto another punctured ball. The main theorem says that when \(a\in \mathbb{B}^n\) and \(f: \mathbb{B}^n\setminus \{0\} \to \mathbb{B}^n\setminus \{a\}\) is a Möbius map with \(f(0)=a,\) then for \(x,y\in \mathbb{B}^n\setminus\{0\}\) it holds that \[ \frac{1-|a|}{1+|a|}c_{_{\mathbb{B}^n{}^{\setminus\{0\}}}}(x,y)\leq c_{_{\mathbb{B}^n{}^{\setminus\{a\}}}}(f(x),f(y))\leq \frac{1+|a|}{1-|a|}c_{_{\mathbb{B}^n{}^{\setminus\{0\}}}}(x,y), \] and the equalities in both sides can be attained.
The second purpose of the paper is to focus on a general questions suggested by M. Vuorinen [in: Proceedings of the international workshop on quasiconformal mappings and their applications. New Delhi: Narosa Publishing House. 291–325 (2007; Zbl 1166.30013)] about the convexity of balls of small radii in metric spaces. Here are discussed the starlikeness and the convexity properties of the Cassinian metric balls.
The third purpose is to study inclusion properties of the Cassinian metric balls in proper subdomains \(D\) of \(\mathbb{R}^n\) with other related metric balls. To be more specific, for given \(x\in D \subsetneq \mathbb{R}^n\) and \(t>0\) the authors find optimal radii \(r,R>0\) depending only on \(x\) and \(t\) such that \[ B_d(x,r)\subset B_c(x,t)\subset B_d(x,R), \] where \(d\) is the other related metric defined on \(D,\) such as the Euclidean metric, the distance ratio metric, the hyperbolic or the quasihyperbolic metric. In particular, several conjectures are also stated in response to sharpness of the inclusion properties.

MSC:

30C20 Conformal mappings of special domains
30C35 General theory of conformal mappings
30F45 Conformal metrics (hyperbolic, Poincaré, distance functions)
51M10 Hyperbolic and elliptic geometries (general) and generalizations

References:

[1] G. D.Anderson, M. K.Vamanamurthy, and M. K.Vuorinen, Conformal Invariants, Inequalities, and Quasiconformal Maps (John Wiley & Sons, Inc., New York, 1997), 505 pp. · Zbl 0885.30012
[2] A. F.Beardon, The Apollonian metric of a domain in \(\mathbb{R}^n\), in: Quasiconformal Mappings and Analysis, edited by P.Duren (ed.), J.Heinonen (ed.), B.Osgood (ed.), and B.Palka (ed.), ((Ann Arbor, MI, 1995), Springer‐Verlag, New York, 1998), pp. 91-108. · Zbl 0890.30030
[3] A. F.Beardon, Geometry of Discrete Groups (Springer‐Verlag, New York, 1995), 340 pp.
[4] J.Chen, P.Hariri, R.Klén, and M.Vuorinen, Lipschitz conditions, triangular ratio metric and quasiconformal maps, Ann. Acad. Sci. Fenn. Math.40, 683-709 (2015). · Zbl 1374.30069
[5] F. W.Gehring and B. G.Osgood, Uniform domains and the quasihyperbolic metric, J. Anal. Math.36, 50-74 (1979). · Zbl 0449.30012
[6] F. W.Gehring and B. P.Palka, Quasiconformally homogeneous domains, J. Anal. Math.30, 172-199 (1976). · Zbl 0349.30019
[7] P.Hariri, R.Klén, M.Vuorinen, and Z.Zhang, Some remarks on the Cassinian metric, Publ. Math. Debrecen, To appear. · Zbl 1399.51009
[8] P.Hästö, A new weighted metric: the relative metric. I, J. Math. Anal. Appl.274(1), 38-58 (2002). · Zbl 1019.54011
[9] P.Hästö, The Apollonian metric: uniformity and quasiconvexity, Ann. Acad. Sci. Fenn. Math.28(2), 385-414 (2003). · Zbl 1029.30027
[10] S.Hokuni, R.Klén, Y.Li, and M.Vuorinen, Balls in the triangular ratio metric, in: Complex Analysis and Dynamical Systems VI. Part 2, pp. 105-123, Contemporary Mathematics. Vol. 667 (Amer. Math. Soc., Providence, RI, 2016). · Zbl 1362.30031
[11] Z.Ibragimov, The Cassinian metric of a domain in \(\overline{\mathbb{R}^n} \), Uzbek. Mat. Zh.1, 53-67 (2009).
[12] Z.Ibragimov, M. R.Mohapatra, S. K.Sahoo, and X.Zhang, Geometry of the Cassinian metric and its inner metric, Bull. Malays. Math. Sci. Soc.(2), p.12 DOI: 10.1007/s40840-015-0246-6. · Zbl 1366.30007
[13] R.Klén, Local convexity properties of j‐metric balls, Ann. Acad. Sci. Fenn. Math.33(1), 281-293 (2008). · Zbl 1149.30035
[14] R.Klén, Local convexity properties of quasihyperbolic balls in punctured space, J. Math. Anal. Appl.342(1), 192-201 (2008). · Zbl 1166.30023
[15] R.Klén, Close‐to‐convexity of quasihyperbolic and j‐metric balls, Ann. Acad. Sci. Fenn. Math.35(2), 493-501 (2010). · Zbl 1213.30079
[16] R.Klén, Local convexity properties of balls in Apollonian and Seittenranta’s metrics, Conform. Geom. Dyn.17, 133-144 (2013). · Zbl 1317.30028
[17] R.Klén and M.Vuorinen, Inclusion relations of hyperbolic type metric balls, Publ. Math. Debrecen81(3‐4), 289-311 (2012). · Zbl 1299.30118
[18] R.Klén and M.Vuorinen, Inclusion relations of hyperbolic type metric balls II, Publ. Math. Debrecen83(1-2), 21-42 (2013). · Zbl 1289.30221
[19] P.Seittenranta, Möbius‐invariant metrics, Math. Proc. Cambridge Philos. Soc.125(3), 511-533 (1999). · Zbl 0917.30015
[20] S.Simić and M.Vuorinen, Lipschitz conditions and the distance ratio metric, Filomat29(9), 2137-2146 (2015). · Zbl 1461.51020
[21] S.Simić, M.Vuorinen, and G.Wang, Sharp Lipschitz constants for the distance ratio metric, Math. Scand.115, 86-103 (2015). · Zbl 1311.30004
[22] J.Väisälä, Lectures on n‐dimensional Quasiconformal Mappings, Lecture Notes in Mathematics, Vol. 229 (Springer, Berlin, 1971), p. 152. · Zbl 0221.30031
[23] M.Vuorinen, Conformal invariants and quasiregular mappings, J. Anal. Math.45, 69-115 (1985). · Zbl 0601.30025
[24] M.Vuorinen, Conformal Geometry and Quasiregular Mappings, Lecture Notes in Mathematics, Vol. 1319 (Springer‐Verlag, Berlin, 1988), 214 pp. · Zbl 0646.30025
[25] M.Vuorinen, Metrics and quasiregular mappings, in: Quasiconformal Mappings and their Applications, edited by S.Ponnusamy (ed.), T.Sugawa (ed.), and M.Vuorinen (ed.) (Narosa Publishing House, New Delhi, India, 2007), pp. 291-325. · Zbl 1152.30001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.