×

Stochastic representation of a fractional subdiffusion equation. The case of infinitely divisible waiting times, Lévy noise and space-time-dependent coefficients. (English) Zbl 1335.60126

The authors state some results on the stochastic representation of a Fokker-Planck-Kolmogorov equation associated with a fractional subdivision process. It is shown that, in many cases, the corresponding process can be defined by a Langevin equation driven by Brownian motion and Lévy noise. This result provides new approaches to derive approximate solutions for fractional FPK equations using Monte Carlo methods.

MSC:

60H30 Applications of stochastic analysis (to PDEs, etc.)
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60G22 Fractional processes, including fractional Brownian motion
60J60 Diffusion processes
35Q84 Fokker-Planck equations
35R11 Fractional partial differential equations
60G51 Processes with independent increments; Lévy processes
60J65 Brownian motion
65C05 Monte Carlo methods

References:

[1] Applebaum, David, L\'evy processes and stochastic calculus, Cambridge Studies in Advanced Mathematics 93, xxiv+384 pp. (2004), Cambridge University Press, Cambridge · Zbl 1073.60002 · doi:10.1017/CBO9780511755323
[2] Bertoin, Jean, L\'evy processes, Cambridge Tracts in Mathematics 121, x+265 pp. (1996), Cambridge University Press, Cambridge · Zbl 0861.60003
[3] Bertoin, Jean, Subordinators: examples and applications. Lectures on probability theory and statistics, Saint-Flour, 1997, Lecture Notes in Math. 1717, 1-91 (1999), Springer, Berlin · Zbl 0955.60046 · doi:10.1007/978-3-540-48115-7\_1
[4] Bichteler, Klaus; Gravereaux, Jean-Bernard; Jacod, Jean, Malliavin calculus for processes with jumps, Stochastics Monographs 2, x+161 pp. (1987), Gordon and Breach Science Publishers, New York · Zbl 0706.60057
[5] [Chechkin] A.V. Chechkin, R. Gorenfo and I.M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed order fractional diffusion equations, Phys. Rev. E, 66 (2002), 1-7.
[6] Chen, Zhen-Qing; Meerschaert, Mark M.; Nane, Erkan, Space-time fractional diffusion on bounded domains, J. Math. Anal. Appl., 393, 2, 479-488 (2012) · Zbl 1251.35177 · doi:10.1016/j.jmaa.2012.04.032
[7] [fogedby] H. C. Fogedby, Langevin equations for continuous time L\'evy flights, Phys. Rev. E 50 (1994), 1657-1701.
[8] [Straka] B. I. Henry, T. A. M. Langlands, and P. Straka, Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces, Phys. Rev. Lett., 105 (2010), 170602. · Zbl 1221.60047
[9] Hewitt, Edwin; Stromberg, Karl, Real and abstract analysis, x+476 pp. (1975), Springer-Verlag, New York-Heidelberg · Zbl 0307.28001
[10] Janicki, Aleksander; Weron, Aleksander, Simulation and chaotic behavior of \(\alpha \)-stable stochastic processes, Monographs and Textbooks in Pure and Applied Mathematics 178, xii+355 pp. (1994), Marcel Dekker, Inc., New York · Zbl 0946.60028
[11] [Jurlewicz\textunderscoreWeron] A. Jurlewicz, K. Weron, and M. Teuerle, Generalized Mittag-Leffler relaxation: Clustering-jump continuous-time random walk approach, Phys. Rev. E, 78, (2008), 011103.
[12] Kochubei, Anatoly N., Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340, 1, 252-281 (2008) · Zbl 1149.26014 · doi:10.1016/j.jmaa.2007.08.024
[13] Leonenko, Nikolai N.; Meerschaert, Mark M.; Sikorskii, Alla, Fractional Pearson diffusions, J. Math. Anal. Appl., 403, 2, 532-546 (2013) · Zbl 1297.60057 · doi:10.1016/j.jmaa.2013.02.046
[14] Lv, Longjin; Qiu, Weiyuan; Ren, Fuyao, Fractional Fokker-Planck equation with space and time dependent drift and diffusion, J. Stat. Phys., 149, 4, 619-628 (2012) · Zbl 1260.82064 · doi:10.1007/s10955-012-0618-3
[15] Magdziarz, Marcin, Stochastic representation of subdiffusion processes with time-dependent drift, Stochastic Process. Appl., 119, 10, 3238-3252 (2009) · Zbl 1180.60051 · doi:10.1016/j.spa.2009.05.006
[16] Magdziarz, Marcin, Path properties of subdiffusion-a martingale approach, Stoch. Models, 26, 2, 256-271 (2010) · Zbl 1205.60080 · doi:10.1080/15326341003756379
[17] Magdziarz, Marcin, Langevin picture of subdiffusion with infinitely divisible waiting times, J. Stat. Phys., 135, 4, 763-772 (2009) · Zbl 1177.82101 · doi:10.1007/s10955-009-9751-z
[18] Magdziarz, Marcin; Gajda, Janusz; Zorawik, Tomasz, Comment on fractional Fokker-Planck equation with space and time dependent drift and diffusion, J. Stat. Phys., 154, 5, 1241-1250 (2014) · Zbl 1291.82094 · doi:10.1007/s10955-014-0919-9
[19] [MWW] M. Magdziarz, A. Weron, and K. Weron, Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation, Phys. Rev. E, 75 (2007), 016708. · Zbl 1123.60045
[20] Meerschaert, Mark M.; Benson, David A.; Scheffler, Hans-Peter; Baeumer, Boris, Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E (3), 65, 4, 041103, 4 pp. (2002) · Zbl 1244.60080 · doi:10.1103/PhysRevE.65.041103
[21] Meerschaert, Mark M.; Nane, Erkan; Xiao, Yimin, Large deviations for local time fractional Brownian motion and applications, J. Math. Anal. Appl., 346, 2, 432-445 (2008) · Zbl 1147.60025 · doi:10.1016/j.jmaa.2008.05.087
[22] [Meer7] M. M. Meerschaert, Y. Zhang, and B. Baeumer, Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett., 35 (2008), L17403.
[23] Meerschaert, Mark M.; Nane, Erkan; Vellaisamy, P., Fractional Cauchy problems on bounded domains, Ann. Probab., 37, 3, 979-1007 (2009) · Zbl 1247.60078 · doi:10.1214/08-AOP426
[24] Meerschaert, Mark M.; Nane, Erkan; Vellaisamy, P., Distributed-order fractional diffusions on bounded domains, J. Math. Anal. Appl., 379, 1, 216-228 (2011) · Zbl 1222.35204 · doi:10.1016/j.jmaa.2010.12.056
[25] Meerschaert, Mark M.; Nane, Erkan; Vellaisamy, P., Transient anomalous sub-diffusion on bounded domains, Proc. Amer. Math. Soc., 141, 2, 699-710 (2013) · Zbl 1266.60087 · doi:10.1090/S0002-9939-2012-11362-0
[26] Meerschaert, Mark M.; Scheffler, Hans-Peter, Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab., 41, 3, 623-638 (2004) · Zbl 1065.60042
[27] Meerschaert, Mark M.; Sikorskii, Alla, Stochastic models for fractional calculus, de Gruyter Studies in Mathematics 43, x+291 pp. (2012), Walter de Gruyter & Co., Berlin · Zbl 1247.60003
[28] Metzler, Ralf, Generalized Chapman-Kolmogorov equation: a unifying approach to the description of anomalous transport in external fields, Phys. Rev. E (3), 62, 5, 6233-6245 (2000) · doi:10.1103/PhysRevE.62.6233
[29] [MBK] R. Metzler, E. Barkai, and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82 (1999), 3563-3567.
[30] Metzler, R.; Barkai, E.; Klafter, J., Deriving fractional Fokker-Planck equations from a generalised master equation, Europhys. Lett., 46, 4, 431-436 (1999) · doi:10.1209/epl/i1999-00279-7
[31] Metzler, Ralf; Klafter, Joseph, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 77 pp. (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[32] Mijena, Jebessa B.; Nane, Erkan, Strong analytic solutions of fractional Cauchy problems, Proc. Amer. Math. Soc., 142, 5, 1717-1731 (2014) · Zbl 1284.35457 · doi:10.1090/S0002-9939-2014-11905-8
[33] Nane, Erkan, Laws of the iterated logarithm for a class of iterated processes, Statist. Probab. Lett., 79, 16, 1744-1751 (2009) · Zbl 1173.60317 · doi:10.1016/j.spl.2009.04.013
[34] Revuz, Daniel; Yor, Marc, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293, xiv+602 pp. (1999), Springer-Verlag, Berlin · Zbl 0917.60006 · doi:10.1007/978-3-662-06400-9
[35] Rosi{\'n}ski, Jan, Tempering stable processes, Stochastic Process. Appl., 117, 6, 677-707 (2007) · Zbl 1118.60037 · doi:10.1016/j.spa.2006.10.003
[36] [samko] S. G. Samko, A. A. Kilbas, and D. I. Maritchev, Integrals and Derivatives of the Fractional Order and Some of Their Applications, Gordon and Breach, Amsterdam, 1993. · Zbl 0818.26003
[37] [Klaf\textunderscoreSok] I.M. Sokolov and J. Klafter, Field-induced dispersion in subdiffusion, Phys. Rev. Lett., 97 (2006), 140602.
[38] Sato, Ken-iti, L\'evy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics 68, xii+486 pp. (1999), Cambridge University Press, Cambridge · Zbl 0973.60001
[39] Stanislavsky, Aleksander; Weron, Karina; Weron, Aleksander, Diffusion and relaxation controlled by tempered \(\alpha \)-stable processes, Phys. Rev. E (3), 78, 5, 051106, 6 pp. (2008) · Zbl 1164.82007 · doi:10.1103/PhysRevE.78.051106
[40] Winkel, Matthias, Electronic foreign-exchange markets and passage events of independent subordinators, J. Appl. Probab., 42, 1, 138-152 (2005) · Zbl 1078.60035
[41] Zhang, Yun-Xiu; Gu, Hui; Liang, Jin-Rong, Equivalence of Subordinated Processes with Tempered \(\alpha \)-Stable Waiting Times and Fractional Fokker-Planck Equations in Space and Time Dependent Fields, J. Stat. Phys., 159, 6, 1495-1503 (2015) · Zbl 1327.82071 · doi:10.1007/s10955-014-1184-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.