×

Stochastic representation of subdiffusion processes with time-dependent drift. (English) Zbl 1180.60051

The paper deals with a class of real valued stochastic processes \(X(t)\), \(t\geq 0\) whose variance has the power-law form, namely, \(\text{Var}[X(t)]\sim ct^\alpha\) as \(t\to\infty\) with some constant \(\alpha\in(0,1)\). If \(\alpha= 1\), this reminds the behavior of a process like the Brownian motion. Thus the terms subdiffusion processes, or slow diffusions, are natural. The author has used fractional Fokker-Planck equations to describe the probability density functions of subdiffusion processes. Since these equations usually do not have explicit solutions, a well converging approximations are constructed. Other interesting results are derived for the moments of stochastic integrals driven by the inverse \(\alpha\)-stable subordinator. These moments determine uniquely a distribution and this fact is effectively used to involve a specific fractional Fokker-Planck equation and its solution.
This well written paper shows that the subdiffusion processes are not only interesting from theoretical point of view, but they are closely related to important applied areas. The reference list represent well both theoretical studies and applications.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60G99 Stochastic processes
60G52 Stable stochastic processes
Full Text: DOI

References:

[1] Bertoin, J., Lévy Processes (1996), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0861.60003
[2] Bertoin, J.; van Harn, K.; Steutel, F. W., Renewal theory and level passage by subordinators, Statist. Probab. Lett., 45, 65-69 (1999) · Zbl 0965.60053
[3] Daley, D. J.; Vere-Jones, D., An Introduction to the Theory of Point Processes, vol. 1 (2003), Springer: Springer New York · Zbl 1026.60061
[4] Feller, W., An Introduction to Probability Theory and Its Applications., vol. 2 (1971), Wiley: Wiley New York · Zbl 0219.60003
[5] Heinsalu, E.; Patriarca, M.; Goychuk, I.; Hänggi, P., Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving, Phys. Rev. Lett., 99, 120602 (2007)
[6] Janicki, A.; Weron, A., Simulation and Chaotic Behaviour of \(\alpha \)-Stable Stochastic Processes (1994), Marcel Dekker: Marcel Dekker New York
[7] Jurlewicz, A., Limit theorems for randomly coarse grained continuous-time random walks, Dissertationes Math., 431, 1-45 (2005) · Zbl 1088.60015
[8] Kingman, J. F.C., On doubly stochastic Poisson processes, Math. Proc. Cambridge Philos. Soc., 60, 923-930 (1964) · Zbl 0134.14108
[9] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations (1995), Springer: Springer Berlin · Zbl 0858.65148
[10] Lagerås, A. N., A renewal-process-type expression for the moments of inverse subordinators, J. Appl. Probab., 42, 1134-1144 (2005) · Zbl 1094.60057
[11] M. Magdziarz, Black-Scholes formula in subdiffusive regime, 2009 (submitted for publication); M. Magdziarz, Black-Scholes formula in subdiffusive regime, 2009 (submitted for publication) · Zbl 1173.82026
[12] Magdziarz, M.; Weron, A., Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation, Phys. Rev. E, 75, 056702 (2007)
[13] Magdziarz, M.; Weron, A.; Weron, K., Fractional Fokker-Planck dynamics: Stochastic representation and computer simulation, Phys. Rev. E, 75, 016708 (2007)
[14] Meerschaert, M. M.; Scheffler, H. P., Limit Theorems for Sums of Independent Random Vectors (2001), Wiley: Wiley New York · Zbl 0990.60003
[15] Meerschaert, M. M.; Benson, D. A.; Scheffler, H. P.; Baeumer, B., Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E, 65, 041103 (2002) · Zbl 1244.60080
[16] Meerschaert, M. M.; Scheffler, H. P., Limit theorems for continuous-time random walks with infinite mean waiting times, J. Appl. Probab., 41, 623-638 (2004) · Zbl 1065.60042
[17] Meerschaert, M. M.; Scheffler, H. P., Stochastic model for ultraslow diffusion, Stochastic Process. Appl., 116, 1215-1235 (2006) · Zbl 1100.60024
[18] Metzler, R.; Barkai, E.; Klafter, J., Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach, Phys. Rev. Lett., 82, 3563-3567 (1999)
[19] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[20] Mikosch, T.; Resnick, S., Activity rates with very heavy tails, Stochastic Process. Appl., 116, 131-1556 (2006) · Zbl 1090.60075
[21] Montroll, E. W.; Weiss, G. H., Random walks on lattices II, J. Math. Phys., 167-181 (1965) · Zbl 1342.60067
[22] Piryatinska, A.; Saichev, A. I.; Woyczynski, W. A., Models of anomalous diffusion: the subdiffusive case, Physica A, 349, 375-420 (2005)
[23] Samko, S. G.; Kilbas, A. A.; Maritchev, D. I., Integrals and Derivatives of the Fractional Order and Some of Their Applications (1993), Gordon and Breach: Gordon and Breach Amsterdam · Zbl 0818.26003
[24] Sato, K.-I., Lévy Processes and Infinitely Divisible Distributions (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0973.60001
[25] Sokolov, I. M.; Klafter, J., Field-induced dispersion in subdiffusion, Phys. Rev. Lett., 97, 140602 (2006)
[26] van Harn, K.; Steutel, F. W., Stationarity of delayed subordinators, Stoch. Models, 17, 369-374 (2001) · Zbl 0988.60048
[27] Weron, A.; Magdziarz, M.; Weron, K., Modeling of subdiffusion in space-time-dependent force fields beyond the fractional Fokker-Planck equation, Phys. Rev. E, 77, 036704 (2008)
[28] Winkel, M., Electronic foreign-exchange markets and passage events of independent subordinators, J. Appl. Probab., 42, 138-152 (2005) · Zbl 1078.60035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.