×

Persistent cup product structures and related invariants. (English) Zbl 07857692

Let \(\mathfrak{Top}\) denote the category of (compactly generated weak Hausdorff) topological spaces. Throughout the paper, by a (topological) space the authors refer to an object in \(\mathfrak{Top}\), and by a persistent space they mean a functor from the poset category \((\mathbb{R},\leq)\) to \(\mathfrak{Top}\). This paper considers only persistent spaces with a discrete set of critical values. In addition, all (co)homology groups are assumed to be taken over a field \(K\). They denote by \(\mathfrak{Int}_\omega\) the set of intervals of type \(\omega\), where \(\omega\) can be any one of the four types: open-open, open-closed, closed-open and closed-closed. Results in this paper apply to all four situations, so for simplicity of notation, they state their results only for closed-closed intervals and omit \(\omega\) unless otherwise stipulated.
Let \((\mathfrak{n},\leq)\) be a poset category with a partial order \(\leq\). For any given category \(\mathcal{C}\), they define the \(\mathfrak{n}\)-valued categorical invariants to be maps \(\text{I}:\text{Ob}(\mathcal{C})\sqcup \text{Mor}(\mathcal{C})\to\mathfrak{n}\) assigning values to both objects and morphisms in \(\mathcal{C}\), such that \(\text{I}(\text{id}_X)=\text{I}(X)\) for all \(X\in \text{Ob}(\mathcal{C})\) and \(\text{I}(g\circ f)\leq\min\{\text{I}(f),\text{I}(g)\}\) for any \(f:X\to Y, g: Y\to Z\) in \(\mathcal{C}\). A persistent object in \(\mathcal{C}\) is any functor \(F_\bullet:(\mathbb{R},\leq)\to\mathcal{C}\).
Here \(\mathfrak{Vec}\) denotes the category of finite-dimensional vector spaces over a given field \(K\).
For a persistent space \(X_\bullet:(\mathbb{R},\leq)\to\mathfrak{Top}\) with \(t\mapsto X_t\), the persistent cup-length invariant \(\text{cup}(X_\bullet):\mathfrak{Int}\to\mathbb{N}\) of \(X_\bullet\), is defined as the functor from \((\mathfrak{Int},\subseteq)\) to \((\mathbb{N},\geq)\) of non-negative integers, which assigns to each interval \([a,b]\) the cup-length of the image ring \(\text{im}\left(\text{H}^\ast(X_b)\to \text{H}^\ast(X_a)\right)\).
They define the persistent LS-category invariant of a persistent space \(X_\bullet\) to be the function \(\text{cat}(X_\bullet):\mathfrak{Int}\to\mathbb{N}\) of \(X_\bullet\) assigning to each interval \([a,b]\) the LS-category of the transition map \(X_a\to X_b\).
Let \(d_{\text{E}}\) be the erosion distance, \(d_{\text{I}}\) be the interleaving distance, \(d_{\text{HI}}\) be the homotopy-interleaving distance and \(d_{\text{GH}}\) be the Gromov-Hausdorff distance.
The main results in the present article are as follows.
Theorem 1 (\(d_{\text{I}}\)-stability of persistent invariants) Let \(\mathcal{C}\) be a category, and let \(\text{I}:\text{Ob}(\mathcal{C})\sqcup \text{Mor}(\mathcal{C})\to\mathfrak{n}\) be a categorical invariant of \(\mathcal{C}\). The persistent \(I\)-invariant is I-Lipschitz stable, that is, for any persistent objects \(F_\bullet,G_\bullet:(\mathbb{R},\leq)\to\mathcal{C}\), \[ d_{\text{E}}(I(F_\bullet),I(G_\bullet))\leq d_{\text{I}}(F_\bullet,G_\bullet). \] Theorem 2 (Homotopical stability) Let \(I\) be a categorical invariant of topological spaces satisfying the condition that for any maps \(X\stackrel{f}{\to} Y\stackrel{g}{\to} Z\stackrel{h}{\to} W\) where \(g\) is a weak homotopy equivalence, \(I(g\circ f)=I(f)\) and \(I(h\circ g)=I(h)\). Then, for two persistent spaces \(X_\bullet,Y_\bullet:(\mathbb{R},\leq)\to \mathfrak{Top}\), we have \[ d_{\text{E}}(I(X_\bullet),I(Y_\bullet))\leq d_{\text{HI}}(X_\bullet,Y_\bullet). \]
For the Vietoris-Rips filtrations \(VR_\bullet(X)\) and \(VR_\bullet(Y)\) of compact metric spaces \(X\) and \(Y\), we have \[ d_{\text{E}}(I(VR_\bullet(X)),I(VR_\bullet(Y)))\leq 2\cdot d_{\text{GH}}(X,Y). \] A standard persistence module \(M_\bullet:(\mathbb{R},\leq)\to \mathfrak{Vec}\) is called \(q\)-tame if it satisfies the condition that \(\text{rk}\left(M_t\to M_{t'}\right)<\infty\) whenever \(t<t'\).
Theorem 3 For persistent spaces \(X_\bullet\) and \(Y_\bullet\) with \(q\)-tame persistent (co)homology, we have \[ d_{\text{E}}(\text{cup}(X_\bullet),\text{cup}(Y_\bullet))\leq d_{\text{E}}(\text{rk}(\Phi(X_\bullet)),\text{rk}(\Phi(Y_\bullet)))\leq d_{\text{HI}}(X_\bullet,Y_\bullet). \] For the Vietoris-Rips filtrations \(VR_\bullet(X)\) and \(VR_\bullet(Y)\) of two metric spaces \(X\) and \(Y\) all the above quantities are bounded above by \(2\cdot d_{\text{GH}}(X,Y)\).

MSC:

55U99 Applied homological algebra and category theory in algebraic topology
55N20 Generalized (extraordinary) homology and cohomology theories in algebraic topology
55M30 Lyusternik-Shnirel’man category of a space, topological complexity à la Farber, topological robotics (topological aspects)
55N31 Persistent homology and applications, topological data analysis

Software:

Ripser

References:

[1] Adamaszek, M.; Adams, H., The Vietoris-Rips complexes of a circle, Pac. J. Math., 290, 1, 1-40, 2017 · Zbl 1366.05124 · doi:10.2140/pjm.2017.290.1
[2] Adamaszek, M.; Adams, H.; Gasparovic, E.; Gommel, M.; Purvine, E.; Sazdanovic, R.; Wang, B.; Wang, Y.; Ziegelmeier, L., On homotopy types of Vietoris-Rips complexes of metric gluings, J. Appl. Comput. Topol., 4, 3, 425-454, 2020 · Zbl 1455.55005 · doi:10.1007/s41468-020-00054-y
[3] Aubrey, H.: Persistent cohomology operations. PhD thesis, Duke University (2011)
[4] Awodey, S., Category Theory, 2010, New York: Oxford University Press Inc., New York · Zbl 1194.18001
[5] Bauer, U., Ripser: efficient computation of Vietoris-Rips persistence barcodes, J. Appl. Comput. Topol., 2021 · Zbl 1476.55012 · doi:10.1007/s41468-021-00071-5
[6] Bauer, U.; Botnan, MB; Oppermann, S.; Steen, J., Cotorsion torsion triples and the representation theory of filtered hierarchical clustering, Adv. Math., 369, 2020 · Zbl 1442.55004 · doi:10.1016/j.aim.2020.107171
[7] Belchí, F.; Murillo, A., \( A_{\infty } \)-persistence, Appl. Algebra Eng. Commun. Comput., 26, 1-2, 121-139, 2015 · Zbl 1330.55008 · doi:10.1007/s00200-014-0241-4
[8] Belchí, F.; Stefanou, A., A-infinity persistent homology estimates detailed topology from point cloud datasets, Discrete Comput. Geom., 2021 · Zbl 1496.55005 · doi:10.1007/s00454-021-00319-y
[9] Bergomi, MG; Vertechi, P., Rank-based persistence, Theory Appl. Categ., 35, 9, 228-260, 2020 · Zbl 1439.55006
[10] Berstein, I.; Ganea, T., The category of a map and of a cohomology class, Fundam. Math., 3, 50, 265-279, 1962 · Zbl 0192.29302 · doi:10.4064/fm-50-3-265-279
[11] Blumberg, A.J., Lesnick, M.: Universality of the homotopy interleaving distance. arXiv preprint arXiv:1705.01690 (2017)
[12] Botnan, M.; Crawley-Boevey, W., Decomposition of persistence modules, Proc. Am. Math. Soc., 148, 11, 4581-4596, 2020 · Zbl 1461.16013 · doi:10.1090/proc/14790
[13] Bubenik, P.; Scott, JA, Categorification of persistent homology, Discrete Comput. Geom., 51, 3, 600-627, 2014 · Zbl 1295.55005 · doi:10.1007/s00454-014-9573-x
[14] Bubenik, P.; De Silva, V.; Scott, J., Metrics for generalized persistence modules, Found. Comput. Math., 15, 6, 1501-1531, 2015 · Zbl 1345.55006 · doi:10.1007/s10208-014-9229-5
[15] Burago, D.; Burago, Y.; Ivanov, S., A Course in Metric Geometry, 2001, Rhode Island: American Mathematical Society, Rhode Island · Zbl 0981.51016
[16] Carlsson, G., Topology and data, Bull. Am. Math. Soc., 46, 2, 255-308, 2009 · Zbl 1172.62002 · doi:10.1090/S0273-0979-09-01249-X
[17] Carlsson, G.: Persistent homology and applied homotopy theory. In: Handbook of Homotopy Theory, pp. 297-329. Chapman and Hall/CRC, Boca Raton (2020). doi:10.1201/9781351251624-8 · Zbl 1476.55014
[18] Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. In: Proceedings of the Twenty-third Annual Symposium on Computational Geometry, pp. 184-193 (2007) · Zbl 1188.55001
[19] Chazal, F.; De Silva, V.; Oudot, S., Persistence stability for geometric complexes, Geom. Dedicata., 173, 1, 193-214, 2014 · Zbl 1320.55003 · doi:10.1007/s10711-013-9937-z
[20] Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.Y.: Proximity of persistence modules and their diagrams. In: Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry, pp. 237-246 (2009) · Zbl 1380.68387
[21] Chazal, F.; de Silva, V.; Glisse, M.; Oudot, S., The Structure and Stability of Persistence Modules, 2016, Berlin: Springer, Berlin · Zbl 1362.55002 · doi:10.1007/978-3-319-42545-0
[22] Cohen-Steiner, D.; Edelsbrunner, H.; Harer, J., Stability of persistence diagrams, Discrete Comput. Geom., 37, 1, 103-120, 2007 · Zbl 1117.54027 · doi:10.1007/s00454-006-1276-5
[23] Contessoto, M., Mémoli, F., Stefanou, A., Zhou, L.: Persistent cup-length. (2021) arXiv preprint arXiv:2107.01553
[24] Contessoto, M., Mémoli, F., Stefanou, A., Zhou, L.: Persistent Cup-Length. In: Goaoc, X., Kerber, M. (eds.) 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), vol. 224, pp. 31-13117. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022). doi:10.4230/LIPIcs.SoCG.2022.31 · Zbl 07849029
[25] Contreras, L.P., Perea, J.: Persistent cup product for quasi periodicity detection. (2021) https://4c0aa4c9-c4b2-450c-a81a-c4a8e2d3f528.filesusr.com/ugd/58704f_dcd2001732bb4b3ab91900f99955241c.pdf. Second Graduate Student Conference: Geometry and Topology meet Data Analysis and Machine Learning (GTDAML2021)
[26] Cornea, O., Lupton, G., Oprea, J., Tanré, D., et al.: Lusternik-Schnirelmann Category. Mathematical Surveys and Monographs, vol. 103. American Mathematical Society, Rhode Island (2003) · Zbl 1032.55001
[27] Crawley-Boevey, W., Decomposition of pointwise finite-dimensional persistence modules, J. Algebra Appl., 14, 5, 1550066, 2015 · Zbl 1345.16015 · doi:10.1142/S0219498815500668
[28] de Silva, V.; Morozov, D.; Vejdemo-Johansson, M., Dualities in persistent (co)homology, Inverse Prob., 27, 12, 2011 · Zbl 1247.68307 · doi:10.1088/0266-5611/27/12/124003
[29] de Silva, V.; Morozov, D.; Vejdemo-Johansson, M., Persistent cohomology and circular coordinates, Discrete Comput. Geom., 45, 4, 737-759, 2011 · Zbl 1216.68322 · doi:10.1007/s00454-011-9344-x
[30] de Silva, V.; Munch, E.; Stefanou, A., Theory of interleavings on categories with a flow, Theory Appl. Categ., 33, 21, 583-607, 2018 · Zbl 1433.18002
[31] Dłotko, P.; Wagner, H., Simplification of complexes for persistent homology computations, Homol. Homotopy Appl., 16, 1, 49-63, 2014 · Zbl 1295.55002 · doi:10.4310/HHA.2014.v16.n1.a3
[32] Edelsbrunner, H.; Harer, J., Persistent homology-a survey, Contemp. Math., 453, 257-282, 2008 · Zbl 1145.55007 · doi:10.1090/conm/453/08802
[33] Farber, M., Topological complexity of motion planning, Discret. Comput. Geom., 29, 2, 211-221, 2003 · Zbl 1038.68130 · doi:10.1007/s00454-002-0760-9
[34] Félix, Y.; Halperin, S., Rational L.-S. category and its applications, Trans. Am. Math. Soc., 273, 1, 1-37, 1982 · Zbl 0508.55004
[35] Fox, R.H.: On the Lusternik-Schnirelmann category. Ann. Math. 333-370 (1941) · Zbl 0027.43104
[36] Frosini, P., A distance for similarity classes of submanifolds of a euclidean space, Bull. Aust. Math. Soc., 42, 3, 407-415, 1990 · Zbl 0707.53004 · doi:10.1017/S0004972700028574
[37] Frosini, P.: Measuring shapes by size functions. In: Intelligent Robots and Computer Vision X: Algorithms and Techniques, vol. 1607, pp. 122-133. International Society for Optics and Photonics (1992). doi:10.1117/12.57059
[38] Ginot, G., Leray, J.: Multiplicative persistent distances. (2019) arXiv preprint arXiv:1905.12307
[39] Giunti, B., Nolan, J.S., Otter, N., Waas, L.: Amplitudes on abelian categories. (2021) arXiv preprint arXiv:2107.09036
[40] González Díaz, R.; Real Jurado, P., Computation of cohomology operations of finite simplicial complexes, Homol. Homotopy Appl. (HHA), 5, 2, 83-93, 2003 · Zbl 1028.55011 · doi:10.4310/HHA.2003.v5.n2.a4
[41] Hatcher, A.: Algebraic Topology. Cambridge Univ. Press, Cambridge (2000). https://cds.cern.ch/record/478079
[42] Herscovich, E., A higher homotopic extension of persistent (co)homology, J. Homotopy Relat. Struct., 13, 3, 599-633, 2018 · Zbl 1405.55004 · doi:10.1007/s40062-017-0195-x
[43] Huang, J.: Cup products in computational topology. Citeseer (2005)
[44] Kaczynski, T.; Dłotko, P.; Mrozek, M., Computing the cubical cohomology ring, Image-A Appl. Math. Image Eng., 1, 3, 137-142, 2010
[45] Kang, L.; Xu, B.; Morozov, D., Evaluating state space discovery by persistent cohomology in the spatial representation system, Front. Comput. Neurosci., 2021 · doi:10.3389/fncom.2021.616748
[46] Lechuga, L.; Murillo, A., Complexity in rational homotopy, Topology, 39, 1, 89-94, 2000 · Zbl 0933.55014 · doi:10.1016/S0040-9383(98)00059-7
[47] Leinster, T., Basic Category Theory, 2014, United Kingdom: Cambridge University Press, United Kingdom · Zbl 1295.18001 · doi:10.1017/CBO9781107360068
[48] Leszczyński, Z., On the representation type of tensor product algebras, Fundam. Math., 144, 2, 143-161, 1994 · Zbl 0817.16008 · doi:10.4064/fm-144-2-143-161
[49] Leszczyński, Z.; Skowroński, A., Tame triangular matrix algebras, Colloq. Math., 86, 2, 259-303, 2000 · Zbl 0978.16014 · doi:10.4064/cm-86-2-259-303
[50] Lim, S., Mémoli, F., Okutan, O.B.: Vietoris-Rips persistent homology, injective metric spaces, and the filling radius. (2020) arXiv preprint arXiv:2001.07588
[51] Lupo, U., Medina-Mardones, A.M., Tauzin, G.: Steenroder. GitHub (2021)
[52] Lupo, U., Medina-Mardones, A.M., Tauzin, G.: Persistence Steenrod modules. J. Appl. Comput. Topol. 1-28 (2022)
[53] Lusternik, L.; Schnirelmann, L., Méthodes Topologiques dans les Problemes Variationnels, 1934, Rue de la Sorbonne: Hermann & Cie, Rue de la Sorbonne · Zbl 0011.02803
[54] Mac Lane, S., Categories for the Working Mathematician, 2013, New York: Springer, New York
[55] Munkres, JR, Elements of Algebraic Topology, 1984, Menlo Park: Addison-Wesley, Menlo Park · Zbl 0673.55001 · doi:10.1201/9780429493911
[56] Oudot, S.Y.: Persistence Theory: from Quiver Representations to Data Analysis, vol. 209. American Mathematical Society, Rhode Island (2015). doi:10.1007/978-3-319-42545-0_1 · Zbl 1335.55001
[57] Patel, A., Generalized persistence diagrams, J. Appl. Comput. Topol., 1, 3, 397-419, 2018 · Zbl 1398.18015 · doi:10.1007/s41468-018-0012-6
[58] Puuska, V., Erosion distance for generalized persistence modules, Homol. Homotopy Appl., 22, 1, 233-254, 2020 · Zbl 1436.55010 · doi:10.4310/HHA.2020.v22.n1.a14
[59] Robins, V., Towards computing homology from finite approximations, Topol. Proc., 24, 503-532, 1999 · Zbl 1026.55009
[60] Rota, G-C, On the foundations of combinatorial theory i. theory of möbius functions, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 2, 4, 340-368, 1964 · Zbl 0121.02406 · doi:10.1007/BF00531932
[61] Rudyak, YB, On analytical applications of stable homotopy (the Arnold conjecture, critical points), Math. Z., 230, 4, 659-672, 1999 · Zbl 0948.37044 · doi:10.1007/PL00004708
[62] Rudyak, YB, On category weight and its applications, Topology, 38, 1, 37-55, 1999 · Zbl 0927.55005 · doi:10.1016/S0040-9383(97)00101-8
[63] Sarin, P.: Cup length as a bound on topological complexity. (2017) arXiv preprint arXiv:1710.06502
[64] Smale, S., On the topology of algorithms. I, J. Complex., 3, 2, 81-89, 1987 · Zbl 0639.68042 · doi:10.1016/0885-064X(87)90021-5
[65] Yarmola, A.: Persistence and computation of the cup product. Undergraduate honors thesis, Stanford University (2010)
[66] Zomorodian, A.; Carlsson, G., Computing persistent homology, Discrete Comput. Geom., 33, 2, 249-274, 2005 · Zbl 1069.55003 · doi:10.1007/s00454-004-1146-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.