×

\(A_\infty\)-persistence. (English) Zbl 1330.55008

This paper introduces the notion of \(A_{\infty}\)-persistence in the homology of a filtration of a topological space. An \(A_{\infty}\)-coalgebra structure on a graded module \(M\) is given by a sequence of morphisms: \[ \Delta_{n} : M \longrightarrow M ^{\otimes n} \] of degree \(n-2\) satisfying certain relationships. In particular \(\Delta_{1}\) should be a differential on \(M\). This structure for the homology of a topological space carries information beyond that carried by the Betti numbers.
Given a finite sequence of maps between topological spaces \[ K_{0} \rightarrow K_{1} \rightarrow \ldots \rightarrow K_{N} \] the authors define the \(p\)th \(\Delta_{n}\)-persistent groups between \(K_{i}\) and \(K_{j}\). The authors show how to assign to the filtration a canonical code of bars which effectively computes its \(\Delta_{n}\)-persistence.

MSC:

55N35 Other homology theories in algebraic topology
18D99 Categorical structures
57T99 Homology and homotopy of topological groups and related structures

References:

[1] Berciano, A., Molina-Abril, H., Real, P.: Searching high order invariants in Computer Imagery. Appl. Algebra Eng. Commun. Comput. 23, 17-28 (2012) · Zbl 1247.68305 · doi:10.1007/s00200-012-0169-5
[2] Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255-308 (2009) · Zbl 1172.62002 · doi:10.1090/S0273-0979-09-01249-X
[3] Carlsson, G., de Silva, V.: Zigzag Persistence. Found. Comput. Math. 10, 367-405 (2010) · Zbl 1204.68242 · doi:10.1007/s10208-010-9066-0
[4] Carlsson, G., Zomorodian, A.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249-274 (2005) · Zbl 1069.55003 · doi:10.1007/s00454-004-1146-y
[5] Derksen, H., Weyman, J.: Quiver representations. Not. Am. Math. Soc. 52(2), 200-206 (2005) · Zbl 1143.16300
[6] de Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algebr. Geom. Topol. 7, 339-358 (2007) · Zbl 1134.55003 · doi:10.2140/agt.2007.7.339
[7] Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511-533 (2002) · Zbl 1011.68152 · doi:10.1007/s00454-002-2885-2
[8] Félix, Y., Halperin, S., Thomas, J.-C.: Rational Homotopy Theory. Graduate Texts in Math., vol. 205. Springer, New York (2000)
[9] Gabriel, P.: Unzerlegbare darstellungen I. Manuscripta Mathematica 6, 71-103 (1972) · Zbl 0232.08001 · doi:10.1007/BF01298413
[10] Ghrist, R.: Barcodes: The persistent topology of data. Bull. Am. Math. Soc. 45(1), 61-75 (2008) · Zbl 1391.55005 · doi:10.1090/S0273-0979-07-01191-3
[11] Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D.: Perturbation theory in differential homological algebra II. Illinois J. Math. 35(3), 357-373 (1991) · Zbl 0727.55012
[12] Hebda-Bolduc, A.R.: Persistent cohomology operations. PhD Thesis, Department of Mathematics, Duke University (2011)
[13] Huebschmann, J., Kadeishvili, T.: Small models for chain algebras. Math. Z. 207(2), 245-280 (1991) · Zbl 0723.57030 · doi:10.1007/BF02571387
[14] Jiménez, J., Real, P.: Rectification of \[A_\infty\] A∞-algebras. Commun. Algebra 35, 2731-2743 (2007) · Zbl 1176.18006 · doi:10.1080/00927870701353514
[15] Kadeishvili, T.: On the homology theory of fibrations. Russ. Math. Surv. 35(3), 231-238 (1980) · Zbl 0521.55015 · doi:10.1070/RM1980v035n03ABEH001842
[16] Kadeishvili, T., Real, P.: Free resolutions for differential modules over differential algebras. J. Math. Sci. 152(3), 307-322 (2008) · Zbl 1328.16001 · doi:10.1007/s10958-008-9072-9
[17] Kontsevich, M.; Soibelman, Y.; Dito, G. (ed.); Sternheimer, D. (ed.), Deformations of algebras over operads and Deligne’s conjecture, 255-307 (2000), Dordrecht · Zbl 0972.18005
[18] Loday, J.-L., Vallette, B.: Algebraic Operads. Grundlehren Math. Wiss., vol. 346. Springer, Heidelberg (2012) · Zbl 1260.18001
[19] Quillen, D.: Rational homotopy theory. Ann. Math. 90, 205-295 (1969) · Zbl 0191.53702 · doi:10.2307/1970725
[20] Robins, V., Sheppard, A.P., Wood, P.J.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646-1658 (2011) · doi:10.1109/TPAMI.2011.95
[21] Tanré, D.: Homotopie Rationelle: Modéles de Chen, Quillen, Sullivan. Lecture Notes in Math., vol. 1025. Springer, Berlin (1983) · Zbl 0539.55001
[22] Zomorodian, A.: Computing and comprehending topology: persistence and hierarchical Morse complexes. PhD thesis, University of Illinois at Urbana-Champaign (2001) · Zbl 0191.53702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.