×

Parameterized algorithms for power-efficiently connecting wireless sensor networks: theory and experiments. (English) Zbl 1492.90031

Summary: We study a problem of energy-efficiently connecting a symmetric wireless communication network: given an \(n\)-vertex graph with edge weights, find a connected spanning subgraph of minimum cost, where the cost is determined by each vertex paying the heaviest edge incident to it in the subgraph. The problem is known to be NP-hard. Strengthening this hardness result, we show that even \(o(\log n)\)-approximating the difference \(d\) between the optimal solution cost and a natural lower bound is NP-hard. Moreover, we show that under the exponential time hypothesis, there are no exact algorithms running in \(2^{o(n)}\) time or in \(f ( d ) \cdot n^{O ( 1 )}\) time for any computable function \(f\). We also show that the special case of connecting \(c\) network components with minimum additional cost generally cannot be polynomial-time reduced to instances of size \(c^{O(1)}\) unless the polynomial-time hierarchy collapses. On the positive side, we provide an algorithm that reconnects \(O(\log n)\)-connected components with minimum additional cost in polynomial time. These algorithms are motivated by application scenarios of monitoring areas or where an existing sensor network may fall apart into several connected components because of sensor faults. In experiments, the algorithm outperforms CPLEX with known integer linear programming (ILP) formulations when \(n\) is sufficiently large compared with \(c\).
Summary of contribution: Wireless sensor networks are used to monitor air pollution, water pollution, and machine health; in forest fire and landslide detection; and in natural disaster prevention. Sensors in wireless sensor networks are often battery-powered and disposable, so one may be interested in lowering the energy consumption of the sensors in order to achieve a long lifetime of the network. We study the min-power symmetric connectivity problem, which models the task of assigning transmission powers to sensors so as to achieve a connected communication network with minimum total power consumption. The problem is NP-hard. We provide perhaps the first parameterized complexity study of optimal and approximate solutions for the problem. Our algorithms work in polynomial time in the scenario where one has to reconnect a sensor network with \(n\) sensors and \(O(\log n)\)-connected components by means of a minimum transmission power increase or if one can find transmission power lower bounds that already yield a network with \(O(\log n)\)-connected components. In experiments, we show that, in this scenario, our algorithms outperform previously known exact algorithms based on ILP formulations.

MSC:

90B18 Communication networks in operations research

Software:

QNet; CPLEX

References:

[1] Alber J, Betzler N, Niedermeier R (2006) Experiments on data reduction for optimal domination in networks. Ann. Oper. Res. 146(1):105-117.Crossref, Google Scholar · Zbl 1106.90011 · doi:10.1007/s10479-006-0045-4
[2] Alon N, Yuster R, Zwick U (1995) Color-coding. J. ACM 42(4):844-856.Crossref, Google Scholar · Zbl 0885.68116 · doi:10.1145/210332.210337
[3] Althaus E, Călinescu G, Mandoiu II, Prasad SK, Tchervenski N, Zelikovsky A (2006) Power efficient range assignment for symmetric connectivity in static ad hoc wireless networks. Wireless Networks 12(3):287-299.Crossref, Google Scholar · doi:10.1007/s11276-005-5275-x
[4] Bentert M, van Bevern R, Nichterlein A, Niedermeier R (2017) Parameterized algorithms for power-efficient connected symmetric wireless sensor networks. Anta AF, Jurdzinski T, Mosteiro MA, Zhang Y, eds. Algorithms Sensor Systems, Lecture Notes in Computer Science, Vol. 10718 (Springer, Berlin), 26-40.Crossref, Google Scholar · Zbl 1503.68026 · doi:10.1007/978-3-319-72751-6_3
[5] Bentert M, Haag R, Hofer C, Koana T, Nichterlein A (2020a) Parameterized complexity of min-power asymmetric connectivity. Theory Comput. Systems 64(7):1158-1182.Crossref, Google Scholar · Zbl 1503.68080 · doi:10.1007/s00224-020-09981-w
[6] Bentert M, van Bevern R, Fluschnik T, Nichterlein A, Niedermeier R (2020b) Polynomial-time data reduction for weighted problems beyond additive goal functions. Preprint, submitted February 18, https://arxiv.org/abs/1910.00277.Google Scholar
[7] Betzler N, van Bevern R, Fellows MR, Komusiewicz C, Niedermeier R (2011) Parameterized algorithmics for finding connected motifs in biological networks. IEEE/ACM Trans. Comput. Biol. Bioinformatics 8(5):1296-1308.Google Scholar
[8] van Bevern R, Smirnov PV (2020) Optimal-size problem kernels for d-hitting set in linear time and space. Inform. Processing Lett. 163(November):Article 105998.Google Scholar · Zbl 1462.68085
[9] van Bevern R, Fluschnik T, Tsidulko OYu (2020) On approximate data reduction for the Rural Postman Problem: Theory and experiments. Networks 76(4):485-508.Crossref, Google Scholar · Zbl 07769699 · doi:10.1002/net.21985
[10] van Bevern R, Froese V, Komusiewicz C (2018) Parameterizing edge modification problems above lower bounds. Theory Comput. Systems 62(3):739-770.Crossref, Google Scholar · Zbl 1386.68075 · doi:10.1007/s00224-016-9746-5
[11] van Bevern R, Komusiewicz C, Sorge M (2017) A parameterized approximation algorithm for the mixed and windy capacitated arc routing problem: Theory and experiments. Networks 70(3):262-278.Crossref, Google Scholar · Zbl 1539.90130 · doi:10.1002/net.21742
[12] Bruckner S, Hüffner F, Karp RM, Shamir R, Sharan R (2010) Topology-free querying of protein interaction networks. J. Comput. Biol. 17(3):237-252.Crossref, Google Scholar · doi:10.1089/cmb.2009.0170
[13] Călinescu G, Măndoiu II, Zelikovsky A (2002) Symmetric connectivity with minimum power consumption in radio networks. Baeza-Yates R, Montanari U, Santoro N, eds. Foundations of Information Technology in the Era of Network and Mobile Computing, Internat. Federation Inform. Processing, Vol. 96 (Springer, Boston), 119-130.Crossref, Google Scholar · doi:10.1007/978-0-387-35608-2_11
[14] Carmi P, Katz MJ (2007) Power assignment in radio networks with two power levels. Algorithmica 47(2):183-201.Crossref, Google Scholar · Zbl 1108.90015 · doi:10.1007/s00453-006-1230-1
[15] Chen J, Huang X, Kanj IA, Xia G (2006) Strong computational lower bounds via parameterized complexity. J. Comput. System Sci. 72(8):1346-1367.Crossref, Google Scholar · Zbl 1119.68092 · doi:10.1016/j.jcss.2006.04.007
[16] Clementi AEF, Penna P, Silvestri R (2004) On the power assignment problem in radio networks. Mobile Network Appl. 9(2):125-140.Crossref, Google Scholar · doi:10.1023/B:MONE.0000013624.32948.87
[17] Clementi AEF, Huiban G, Penna P, Rossi G, Verhoeven YC (2002) Some recent theoretical advances and open questions on energy consumption in ad-hoc wireless networks. Proc. 3rd Workshop Approximation Randomization Algorithms Comm. Networks, Proceedings in Informatics, Vol. 15 (Carleton Scientific, Waterloo, ON, Canada), 23-38.Google Scholar
[18] Cygan M, Pilipczuk M, Pilipczuk M, Wojtaszczyk JO (2013) On multiway cut parameterized above lower bounds. ACM Trans. Comput. Theory 5(1):Article 3.Crossref, Google Scholar · Zbl 1322.68098 · doi:10.1145/2462896.2462899
[19] Cygan M, Fomin FV, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilipczuk M, Saurabh S (2015) Parameterized Algorithms (Springer International Publishing, Cham, Switzerland).Crossref, Google Scholar · Zbl 1334.90001 · doi:10.1007/978-3-319-21275-3
[20] de Graaf M, Boucherie RJ, Hurink JL, van Ommeren JCW (2019) An average case analysis of the minimum spanning tree heuristic for the power assignment problem. Random Structures Algorithms 55(1):89-103.Crossref, Google Scholar · Zbl 1430.68469 · doi:10.1002/rsa.20831
[21] Dost B, Shlomi T, Gupta N, Ruppin E, Bafna V, Sharan R (2008) QNet: A tool for querying protein interaction networks. J. Comput. Biol. 15(7):913-925.Crossref, Google Scholar · doi:10.1089/cmb.2007.0172
[22] Downey RG, Fellows MR (2013) Fundamentals of Parameterized Complexity (Springer, London).Crossref, Google Scholar · Zbl 1358.68006 · doi:10.1007/978-1-4471-5559-1
[23] Erzin AI, Mladenovic N, Plotnikov RV (2017) Variable neighborhood search variants for Min-power symmetric connectivity problem. Comput. Oper. Res. 78(February):557-563.Crossref, Google Scholar · Zbl 1391.90654 · doi:10.1016/j.cor.2016.05.010
[24] Erzin AI, Plotnikov RV, Shamardin YV (2013) On some polynomially solvable cases and approximate algorithms in the optimal communication tree construction problem. J. Appl. Indust. Math. 7(2):142-152.Crossref, Google Scholar · Zbl 1324.90181 · doi:10.1134/S1990478913020038
[25] Flum J, Grohe M (2006) Parameterized Complexity Theory, Texts in Theoretical Computer Science, an EATCS Series (Springer, Berlin).Google Scholar · Zbl 1143.68016
[26] Fomin FV, Lokshtanov D, Saurabh S, Zehavi M (2019) Kernelization (Cambridge University Press, Cambridge, UK).Google Scholar · Zbl 1426.68003
[27] Garg S, Philip G (2016) Raising the bar for vertex cover: Fixed-parameter tractability above a higher guarantee. Kraughgamer R, ed. Proc. 27th Annual ACM-SIAM Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics, Philadelphia), 1152-1166.Google Scholar · Zbl 1398.68234
[28] Gutin G, Wahlstrom M, Yeo A (2017) Rural Postman parameterized by the number of components of required edges. J. Comput. System Sci. 83(1):121-131.Google Scholar · Zbl 1350.68144
[29] Hermelin D, Kratsch S, Sołtys K, Wahlström M, Wu X (2015) A completeness theory for polynomial (Turing) kernelization. Algorithmica 71(3):702-730.Crossref, Google Scholar · Zbl 1312.68102 · doi:10.1007/s00453-014-9910-8
[30] Hoffmann S, Kampermann T, Wanke E (2018) Minimizing the number of max-power users in ad-hoc wireless networks with minimum node degree requirements. Inform. Process. Lett. 136(August):25-29.Crossref, Google Scholar · Zbl 1457.68218 · doi:10.1016/j.ipl.2018.03.015
[31] Impagliazzo R, Paturi R (2001) On the complexity of k-SAT. J. Comput. System Sci. 62(2):367-375.Google Scholar · Zbl 0990.68079
[32] Impagliazzo R, Paturi R, Zane F (2001) Which problems have strongly exponential complexity? J. Comput. System Sci. 63(4):512-530.Crossref, Google Scholar · Zbl 1006.68052 · doi:10.1006/jcss.2001.1774
[33] Kirousis LM, Kranakis E, Krizanc D, Pelc A (2000) Power consumption in packet radio networks. Theoret. Comput. Sci. 243(1):289-305.Crossref, Google Scholar · Zbl 0944.68001 · doi:10.1016/S0304-3975(98)00223-0
[34] Mahajan M, Raman V (1999) Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2):335-354.Google Scholar · Zbl 0921.68052
[35] Mellor D, Prieto E, Mathieson L, Moscato P (2010) A kernelisation approach for multiple d-hitting set and its application in optimal multi-drug therapeutic combinations. PLoS One 5(10):e13055.Crossref, Google Scholar · doi:10.1371/journal.pone.0013055
[36] Montemanni R, Gambardella L (2005) Exact algorithms for the minimum power symmetric connectivity problem in wireless networks. Comput. Oper. Res. 32(11):2891-2904.Crossref, Google Scholar · Zbl 1071.90514 · doi:10.1016/j.cor.2004.04.017
[37] Niedermeier R (2006) Invitation to Fixed-Parameter Algorithms (Oxford University Press, Oxford, UK).Crossref, Google Scholar · Zbl 1095.68038 · doi:10.1093/acprof:oso/9780198566076.001.0001
[38] Panigrahi D (2011) Survivable network design problems in wireless networks. Randall D, ed. Proc. 22nd Annual ACM-SIAM Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics, Philadelphia), 1014-1027.Google Scholar · Zbl 1373.68053
[39] Perlin K, Hoffert EM (1989) Hypertexture. Comput. Graph. 23(3):253-262.Crossref, Google Scholar · doi:10.1145/74334.74359
[40] Plotnikov R, Erzin A, Mladenovic N (2019) VNDS for the min-power symmetric connectivity problem. Optim. Lett. 13(8):1897-1911.Crossref, Google Scholar · doi:10.1007/s11590-018-1324-0
[41] Raz R, Safra S (1997) A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. Leighton FT, Shor PW, eds. Proc. 29th Annual ACM Sympos. Theory Comput. (ACM, New York), 475-484.Google Scholar · Zbl 0963.68175
[42] Rodoplu V, Meng TH (1999) Minimum energy mobile wireless networks. IEEE J. Selected Areas Comm. 17(8):1333-1344.Crossref, Google Scholar · doi:10.1109/49.779917
[43] Schrijver A (2003) Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combinatorics, Vol. 24 (Springer, Berlin).Google Scholar · Zbl 1041.90001
[44] Scott J, Ideker T, Karp RM, Sharan R (2006) Efficient algorithms for detecting signaling pathways in protein interaction networks. J. Comput. Biol. 13(2):133-144.Crossref, Google Scholar · doi:10.1089/cmb.2006.13.133
[45] Smirnov PV (2020) Razrabotka algoritmov i programmnogo obespecheniya dlya resheniya zadach analiza setevykh struktur [Algorithm and software design for network analysis problems]. Master’s thesis, Novosibirsk State University, Novosibirsk, Russian Federation.Google Scholar
[46] Sorge M, van Bevern R, Niedermeier R, Weller M (2011) From few components to an Eulerian graph by adding arcs. Kolman P, Kratochvıl J, eds. Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, Vol. 6986 (Springer, Berlin), 307-318.Crossref, Google Scholar · Zbl 1341.05144 · doi:10.1007/978-3-642-25870-1_28
[47] Sorge M, van Bevern R, Niedermeier R, Weller M (2012) A new view on Rural Postman based on Eulerian Extension and Matching. J. Discrete Algorithms 16(October):12-33.Crossref, Google Scholar · Zbl 1255.68076 · doi:10.1016/j.jda.2012.04.007
[48] Williamson DP, Shmoys DB (2011) The Design of Approximation Algorithms (Cambridge University Press, New York).Crossref, Google Scholar · Zbl 1219.90004 · doi:10.1017/CBO9780511921735
[49] Zalyubovskiy VV, Erzin AI, Astrakov SN, Choo H (2009) Energy-efficient area coverage by sensors with adjustable ranges. Sensors (Basel) 9(4):2446-2460.Crossref, Google Scholar · doi:10.3390/s90402446
[50] Zhang H, Hou JC (2005) Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc Sensor Wireless Networks 1(1-2):89-124.Google Scholar
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.