×

On approximate data reduction for the rural postman problem: theory and experiments. (English) Zbl 07769699

Summary: Given an undirected graph with edge weights and a subset \(R\) of its edges, the Rural Postman Problem (RPP) is to find a closed walk of minimum total weight containing all edges of \(R\). We prove that RPP is \(\mathrm{WK}[1]\)-complete parameterized by the number and weight \(d\) of edges traversed additionally to the required ones. Thus RPP instances cannot be polynomial-time compressed to instances of size polynomial in \(d\) unless the polynomial-time hierarchy collapses. In contrast, denoting by \(b \leq 2d\) the number of vertices incident to an odd number of edges of \(R\) and by \(c \leq d\) the number of connected components formed by the edges in \(R\), we show how to reduce any RPP instance \(I\) to an RPP instance \(I^\prime\) with \(2b + O(c/ \varepsilon)\) vertices in \(O(n^3)\) time so that any \(\alpha\)-approximate solution for \(I^\prime\) gives an \(\alpha(1 + \varepsilon)\)-approximate solution for \(I\), for any \( \alpha \geq 1\) and \(\varepsilon > 0\). That is, we provide a polynomial-size approximate kernelization scheme (PSAKS). We experimentally evaluate it on wide-spread benchmark data sets as well as on two real snow plowing instances from Berlin. We also make first steps toward a PSAKS for the parameter \(c\).
{© 2020 Wiley Periodicals LLC}

MSC:

90Cxx Mathematical programming

References:

[1] J.Alber, N.Betzler, and R.Niedermeier, Experiments on data reduction for optimal domination in networks, Ann. Oper. Res.146 (2006), 105-117. https://doi.org/10.1007/s10479‐006‐0045‐4. · Zbl 1106.90011 · doi:10.1007/s10479‐006‐0045‐4
[2] J.‐M.Belenguer, E.Benavent, P.Lacomme, and C.Prins, Lower and upper bounds for the mixed capacitated arc routing problem, Comput. Oper. Res.33 (2006), 3363-3383. https://doi.org/10.1016/j.cor.2005.02.009. · Zbl 1094.90035 · doi:10.1016/j.cor.2005.02.009
[3] M.Bentert, R.vanBevern, T.Fluschnik, A.Nichterlein, and R.Niedermeier, Polynomial‐time data reduction for weighted problems beyond additive goal functions, 2020, https://arxiv.org/abs/1910.00277.
[4] M.Bentert, R.vanBevern, A.Nichterlein, and R.Niedermeier, “Parameterized algorithms for power‐efficient connected symmetric wireless sensor networks,” ALGOSENSORS 2017. Lecture Notes in Computer Science, vol. 10718, A.F.Anta (ed.), T.Jurdzinski (ed.), M.A.Mosteiro (ed.), and Y.Zhang (ed.) (eds), Springer, Cham, Switzerland, 2017, pp. 26-40. https://doi.org/10.1007/978‐3‐319‐72751‐6_3. · Zbl 1503.68026 · doi:10.1007/978‐3‐319‐72751‐6_3
[5] R.vanBevern, T.Fluschnik, and O. Yu.Tsidulko, “On (1 + ϵ)‐approximate data reduction for the rural postman problem,” MOTOR 2019. Lecture Notes in Computer Science, vol. 11548, M.Khachay (ed.), Y.Kochetov (ed.), and P.Pardalos (ed.) (eds), Springer, Cham, Switzerland, 2019, pp. 279-294. https://doi.org/10.1007/978‐3‐030‐22629‐9_20. · Zbl 1443.90303 · doi:10.1007/978‐3‐030‐22629‐9_20
[6] R.vanBevern, T.Fluschnik, and O. Yu.Tsidulko, Parameterized algorithms and data reduction for the short secluded s‐t‐path problem, Networks75 (2020), 34-63. https://doi.org/10.1002/net.21904. · Zbl 1533.68116 · doi:10.1002/net.21904
[7] R.vanBevern, S.Hartung, A.Nichterlein, and M.Sorge, Constant‐factor approximations for capacitated arc routing without triangle inequality, Oper. Res. Lett.42 (2014), 290-292. https://doi.org/10.1016/j.orl.2014.05.002. · Zbl 1408.90044 · doi:10.1016/j.orl.2014.05.002
[8] R.vanBevern, C.Komusiewicz, and M.Sorge, A parameterized approximation algorithm for the mixed and windy capacitated arc routing problem: theory and experiments, Networks70 (2017), 262-278. https://doi.org/10.1002/net.21742. · Zbl 1539.90130 · doi:10.1002/net.21742
[9] R.vanBevern, R.Niedermeier, M.Sorge, and M.Weller, “Complexity of arc routing problems,” Arc Routing: Problems, Methods, and Applications. MOS‐SIAM Series on Optimization, vol. 20, Á.Corberán (ed.) and G.Laporte (ed.) (eds), SIAM, Philadelphia, PA, USA, 2015, pp. 19-52. https://doi.org/10.1137/1.9781611973679.ch2. · Zbl 1377.90114 · doi:10.1137/1.9781611973679.ch2
[10] R.vanBevern and V.A.Slugina, A historical note on the 3/2‐approximation algorithm for the metric traveling salesman problem, Historia Math., to appear. https://doi.org/10.1016/j.hm.2020.04.003. · Zbl 1462.90114 · doi:10.1016/j.hm.2020.04.003
[11] R.vanBevern and P.V.Smirnov, Optimal‐size problem kernels for d‐hitting set in linear time and space, Inform. Process. Lett., to appear, 163, 105998. https://doi.org/10.1016/j.ipl.2020.105998. · Zbl 1462.68085 · doi:10.1016/j.ipl.2020.105998
[12] R.vanBevern and O. Yu.Tsidulko, Data reduction for the location rural postman problem. Abstracts of the 33rd Annual Conference of the Belgian Operations Research Society (ORBEL 33), February 7-8, Hasselt University, Belgium, 2019, pp. 41-43.
[13] J.Brandão and R.Eglese, A deterministic tabu search algorithm for the capacitated arc routing problem, Comput. Oper. Res.35 (2008), 1112-1126. https://doi.org/10.1016/j.cor.2006.07.007. · Zbl 1179.90031 · doi:10.1016/j.cor.2006.07.007
[14] N.Christofides, The optimum traversal of a graph, Omega1 (1973), 719-732. https://doi.org/10.1016/0305‐0483(73)90089‐3. · doi:10.1016/0305‐0483(73)90089‐3
[15] N.Christofides, Worst‐case analysis of a new heuristic for the traveling salesman problem, Technical Report 388, Carnegie‐Mellon University, Pittsburgh, PA, 1976.
[16] A.Corberán, A.N.Letchford, and J.M.Sanchis, A cutting plane algorithm for the general routing problem, Math. Programming90 (2001), 291-316. https://doi.org/10.1007/PL00011426. · Zbl 0989.90026 · doi:10.1007/PL00011426
[17] A.Corberán, I.Plana, and J.M.Sanchis, A branch & cut algorithm for the windy general routing problem and special cases, Networks49 (2007), 245-257. https://doi.org/10.1002/net.20176. · Zbl 1141.90563 · doi:10.1002/net.20176
[18] Á.Corberán (ed.) and G.Laporte (ed.) (eds), Arc Routing: Problems, Methods, and Applications. MOS‐SIAM Series on Optimization, vol. 20, SIAM, Philadelphia, PA, USA 2015. https://doi.org/10.1137/1.9781611973679. · Zbl 1322.90006 · doi:10.1137/1.9781611973679
[19] F.Dorn, H.Moser, R.Niedermeier, and M.Weller, Efficient algorithms for Eulerian extension and rural postman, SIAM J. Discrete Math.27 (2013), 75-94. https://doi.org/10.1137/110834810. · Zbl 1267.05131 · doi:10.1137/110834810
[20] J.Edmonds and E.L.Johnson, Matching, Euler tours and the Chinese postman, Math. Programming5 (1973), 88-124. https://doi.org/10.1007/BF01580113. · Zbl 0281.90073 · doi:10.1007/BF01580113
[21] R.W.Eglese and H.Murdock, Routeing road sweepers in a rural area, J. Oper. Res. Soc.42 (1991), 281-288. https://doi.org/10.1057/jors.1991.66. · doi:10.1057/jors.1991.66
[22] E.Eiben, D.Hermelin, and M.S.Ramanujan, “Lossy Kernels for Hitting Subgraphs,” MFCS 2017. Leibniz International Proceedings in Informatics (LIPIcs), vol. 83, K.G.Larsen (ed.), H.L.Bodlaender (ed.), and J.‐F.Raskin (ed.) (eds), Schloss Dagstuhl-Leibniz‐Zentrum für Informatik, Dagstuhl, Germany, 2017, pp. 67:1-67:14. https://doi.org/10.4230/LIPIcs.MFCS.2017.67. · Zbl 1441.68175 · doi:10.4230/LIPIcs.MFCS.2017.67
[23] E.Eiben, M.Kumar, A.E.Mouawad, F.Panolan, and S.Siebertz, “Lossy Kernels for Connected Dominating Set on Sparse Graphs,” 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 96, R.Niedermeier (ed.) and B.Vallée (ed.) (eds), Schloss Dagstuhl-Leibniz‐Zentrum für Informatik, Dagstuhl, Germany, 2018, pp. 29:1-29:15. https://doi.org/10.4230/LIPIcs.STACS.2018.29. · Zbl 1487.68176 · doi:10.4230/LIPIcs.STACS.2018.29
[24] H.A.Eiselt, M.Gendreau, and G.Laporte, Arc routing problems, part II: The rural postman problem, Oper. Res.43 (1995), 399-414. https://doi.org/10.1287/opre.43.3.399. · Zbl 0853.90042 · doi:10.1287/opre.43.3.399
[25] M.Etscheid, S.Kratsch, M.Mnich, and H.Röglin, Polynomial kernels for weighted problems, J. Comput. System Sci.84 (2017), 1-10. https://doi.org/10.1016/j.jcss.2016.06.004. · Zbl 1353.68122 · doi:10.1016/j.jcss.2016.06.004
[26] M.R.Fellows, A.Kulik, F.A.Rosamond, and H.Shachnai, Parameterized approximation via fidelity preserving transformations, J. Comput. System Sci.93 (2018), 30-40. https://doi.org/10.1016/j.jcss.2017.11.001. · Zbl 1382.68105 · doi:10.1016/j.jcss.2017.11.001
[27] E.Fernández, O.Meza, R.Garfinkel, and M.Ortega, On the undirected rural postman problem: Tight bounds based on a new formulation, Oper. Res.51 (2003), 281-291. https://doi.org/10.1287/opre.51.2.281.12790. · Zbl 1163.90709 · doi:10.1287/opre.51.2.281.12790
[28] H.Fleischner, Eulerian Graphs and Related Topics: Part 1. Annals of Discrete Mathematics, vol. 2, 50, Elsevier, Amsterdam, The Netherlands, 1991, pp. X.1-X.14. · Zbl 0792.05092
[29] J.Flum and M.Grohe, Parameterized Complexity Theory, Texts in Theoretical Computer Science. An EATCS Series, Springer, Berlin, Heidelberg, Germany, 2006. https://doi.org/10.1007/3‐540‐29953‐X. · Zbl 1143.68016 · doi:10.1007/3‐540‐29953‐X
[30] F.V.Fomin, D.Lokshtanov, S.Saurabh, and M.Zehavi, Kernelization, Cambridge University Press, Cambridge, 2019. https://doi.org/10.1017/9781107415157. · Zbl 1426.68003 · doi:10.1017/9781107415157
[31] A.Frank and É.Tardos, An application of simultaneous diophantine approximation in combinatorial optimization, Combinatorica7 (1987), 49-65. https://doi.org/10.1007/BF02579200. · Zbl 0641.90067 · doi:10.1007/BF02579200
[32] G.N.Frederickson, Approximation algorithms for NP‐hard routing problems, Ph.D. thesis, Univ. of Maryland Graduate School, College Park, MD, 1977.
[33] M.R.Garey and D.S.Johnson, Computers and Intractability: A Guide to the Theory of NP‐Completeness, Freeman, New York, 1979. · Zbl 0411.68039
[34] G.Ghiani and G.Improta, The laser‐plotter beam routing problem, J. Oper. Res. Soc.52 (2001), 945-951. https://doi.org/10.1057/palgrave.jors.2601161. · Zbl 1181.90105 · doi:10.1057/palgrave.jors.2601161
[35] G.Ghiani and G.Laporte, Eulerian location problems, Networks34 (1999), 291-302. https://doi.org/10.1002/(SICI)1097‐0037(199912)34:4<291::AID‐NET9>3.0.CO;2‐4. · Zbl 0948.90085 · doi:10.1002/(SICI)1097‐0037(199912)34:4<291::AID‐NET9>3.0.CO;2‐4
[36] B.L.Golden and R.T.Wong, Capacitated arc routing problems, Networks11 (1981), 305-315. https://doi.org/10.1002/net.3230110308. · Zbl 0459.90083 · doi:10.1002/net.3230110308
[37] M.Grötschel, M.Jünger, and G.Reinelt, Optimal control of plotting and drilling machines: A case study, Zeitschr. Oper. Res.35 (1991), 61-84. https://doi.org/10.1007/BF01415960. · Zbl 0725.90054 · doi:10.1007/BF01415960
[38] G.Gutin, M.Wahlström, and A.Yeo, Rural postman parameterized by the number of components of required edges, J. Comput. System Sci.83 (2017), 121-131. https://doi.org/10.1016/j.jcss.2016.06.001. · Zbl 1350.68144 · doi:10.1016/j.jcss.2016.06.001
[39] D.Hermelin, S.Kratsch, K.Sołtys, M.Wahlström, and X.Wu, A completeness theory for polynomial (Turing) kernelization, Algorithmica71 (2015), 702-730. https://doi.org/10.1007/s00453‐014‐9910‐8. · Zbl 1312.68102 · doi:10.1007/s00453‐014‐9910‐8
[40] C.Hierholzer and C.Wiener, Ueber die Möglichkeit, einen Linienzug ohne Wiederholung und ohne Unterbrechung zu umfahren, Math. Ann.6 (1873), 30-32. https://doi.org/10.1007/BF01442866. · JFM 05.0286.02 · doi:10.1007/BF01442866
[41] M.H.Hà, N.Bostel, A.Langevin, and L.‐M.Rousseau, Solving the close‐enough arc routing problem, Networks63 (2014), 107-118. https://doi.org/10.1002/net.21525. · Zbl 1338.90427 · doi:10.1002/net.21525
[42] K.Jansen, Bounds for the general capacitated routing problem, Networks23 (1993), 165-173. https://doi.org/10.1002/net.3230230304. · Zbl 0778.90079 · doi:10.1002/net.3230230304
[43] M.Karpinski, M.Lampis, and R.Schmied, New inapproximability bounds for TSP, J. Comput. System Sci.81 (2015), 1665-1677. https://doi.org/10.1016/j.jcss.2015.06.003. · Zbl 1328.68076 · doi:10.1016/j.jcss.2015.06.003
[44] R.Krithika, D.Majumdar, and V.Raman, Revisiting connected vertex cover: FPT algorithms and lossy kernels, Theory Comput. Syst.62 (2018), 1690-1714. https://doi.org/10.1007/s00224‐017‐9837‐y. · Zbl 1430.68225 · doi:10.1007/s00224‐017‐9837‐y
[45] R.Krithika, P.Misra, A.Rai, and P.Tale, “Lossy kernels for graph contraction problems,” FSTTCS 2016. Leibniz International Proceedings in Informatics (LIPIcs), vol. 65, A.Lal (ed.), S.Akshay (ed.), S.Saurabh (ed.), and S.Sen (ed.) (eds), Schloss Dagstuhl-Leibniz‐Zentrum für Informatik, Dagstuhl, Germany, 2016, pp. 23:1-23:14. https://doi.org/10.4230/LIPIcs.FSTTCS.2016.23. · Zbl 1391.68059 · doi:10.4230/LIPIcs.FSTTCS.2016.23
[46] J.K.Lenstra and A.H.G.R.Kan, On general routing problems, Networks6 (1976), 273-280. https://doi.org/10.1002/net.3230060305. · Zbl 0366.90092 · doi:10.1002/net.3230060305
[47] D.Lokshtanov, F.Panolan, M.S.Ramanujan, and S.Saurabh, “Lossy kernelization,” STOC 2017, H.Hatami (ed.), P.McKenzie (ed.), and V.King (ed.) (eds), ACM, New York, NY, USA, 2017, pp. 224-237. https://doi.org/10.1145/3055399.3055456. · Zbl 1370.68136 · doi:10.1145/3055399.3055456
[48] D.Marx and L.A.Végh, Fixed‐parameter algorithms for minimum‐cost edge‐connectivity augmentation, ACM Trans. Algor.11 (2015), 27:1-27:24. https://doi.org/10.1145/2700210. · Zbl 1398.68255 · doi:10.1145/2700210
[49] D.Mellor, E.Prieto, L.Mathieson, and P.Moscato, A kernelisation approach for multiple d‐hitting set and its application in optimal multi‐drug therapeutic combinations, PLoS One5 (2010), e13055. https://doi.org/10.1371/journal.pone.0013055. · doi:10.1371/journal.pone.0013055
[50] C.S.Orloff, A fundamental problem in vehicle routing, Networks4 (1974), 35-64. https://doi.org/10.1002/net.3230040105. · Zbl 0368.90130 · doi:10.1002/net.3230040105
[51] G.Reinelt, D.O.Theis, and K.M.Wenger, Computing finest mincut partitions of a graph and application to routing problems, Discrete Appl. Math.156 (2008), 385-396. https://doi.org/10.1016/j.dam.2007.03.022. · Zbl 1165.90612 · doi:10.1016/j.dam.2007.03.022
[52] J.T.Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. ACM27 (1980), 701-717. https://doi.org/10.1145/322217.322225. · Zbl 0452.68050 · doi:10.1145/322217.322225
[53] A.I.Serdyukov, O zadache nakhozhdeniya minimal’nogo Eilerova mul’tigrafa dlya svyaznogo grafa so vzveshennymi rebrami, Upravlyaemye Sistemy12 (1974), 61-67http://nas1.math.nsc.ru/aim/journals/us/us12/us12_008.pdf.
[54] A.I.Serdyukov, O nekotorykh ekstremal’nykh obkhodakh v grafakh, Upravlyaemye Sistemy17 (1978), 76-79http://nas1.math.nsc.ru/aim/journals/us/us17/us17_007.pdf. · Zbl 0475.90080
[55] M.Sorge, R.vanBevern, R.Niedermeier, and M.Weller, From Few Components to an Eulerian Graph by Adding Arcs. Lecture Notes in Computer Science, vol. 6986, P.Kolman (ed.) and J.Kratochvíl (ed.) (eds), Springer, Berlin, Heidelberg, Germany, 2011, pp. 307-318. https://doi.org/10.1007/978‐3‐642‐25870‐1_28. · Zbl 1341.05144 · doi:10.1007/978‐3‐642‐25870‐1_28
[56] M.Sorge, R.vanBevern, R.Niedermeier, and M.Weller, A new view on rural postman based on Eulerian extension and matching, J. Disc. Algor.16 (2012), 12-33. https://doi.org/10.1016/j.jda.2012.04.007. · Zbl 1255.68076 · doi:10.1016/j.jda.2012.04.007
[57] G.Ulusoy, The fleet size and mix problem for capacitated arc routing, Eur. J. Oper. Res.22 (1985), 329-337. https://doi.org/10.1016/0377‐2217(85)90252‐8. · Zbl 0576.90094 · doi:10.1016/0377‐2217(85)90252‐8
[58] S.Wøhlk, An approximation algorithm for the capacitated arc routing problem, Open Oper. Res. J.2 (2008), 8-12. https://doi.org/10.2174/1874243200802010008. · Zbl 1322.90015 · doi:10.2174/1874243200802010008
[59] R.Zippel, “Probabilistic algorithms for sparse polynomials,” EUROSAM 1979. Lecture Notes in Computer Science, vol. 72, E.W.Ng (ed.) (ed.), Springer, Berlin, Heidelberg, Germany, 1979, pp. 216-226. https://doi.org/10.1007/3‐540‐09519‐5_73. · Zbl 0418.68040 · doi:10.1007/3‐540‐09519‐5_73
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.