×

Line defect half-indices of \(\mathrm{SU}(N)\) Chern-Simons theories. (English) Zbl 07899665

Summary: We study the Wilson line defect half-indices of 3d \(\mathcal{N} = 2\) supersymmetric \(\mathrm{SU}(N)\) Chern-Simons theories of level \(k \leq -N\) with Neumann boundary conditions for the gauge fields, together with 2d Fermi multiplets and fundamental 3d chiral multiplets to cancel the gauge anomaly. We derive some exact results and also make some conjectures based on expansions of the \(q\)-series. We find several interesting connections with special functions known in the literature, including Rogers-Ramanujan functions for which we conjecture integral representations, and the appearance of Appell-Lerch sums for certain Wilson line half-index grand canonical ensembles which reveal an unexpected appearance of mock modular functions. We also find intriguing \(q\)-difference equations relating half-indices to Wilson line half-indices. Some of these results also have a description in terms of a dual theory with Dirichlet boundary conditions for the vector multiplet in the dual theory.

MSC:

81Txx Quantum field theory; related classical field theories
33Dxx Basic hypergeometric functions
05Axx Enumerative combinatorics

References:

[1] Gadde, A.; Gukov, S.; Putrov, P., Walls, Lines, and Spectral Dualities in 3d Gauge Theories, JHEP, 05, 047, 2014 · doi:10.1007/JHEP05(2014)047
[2] Okazaki, T.; Yamaguchi, S., Supersymmetric boundary conditions in three-dimensional N = 2 theories, Phys. Rev. D, 87, 125005, 2013 · doi:10.1103/PhysRevD.87.125005
[3] A. Gadde, S. Gukov and P. Putrov, Fivebranes and 4-manifolds, in Progress in Mathematics319, Springer (2016), pp. 155-245 [doi:10.1007/978-3-319-43648-7_7] [arXiv:1306.4320] [INSPIRE]. · Zbl 1373.81295
[4] Y. Yoshida and K. Sugiyama, Localization of three-dimensional \(\mathcal{N} = 2\) supersymmetric theories on S^1× D^2, Prog. Theor. Exp. Phys.2020 (2020) 113B02 [arXiv:1409.6713] [INSPIRE]. · Zbl 1477.81094
[5] Dimofte, T.; Gaiotto, D.; Paquette, NM, Dual boundary conditions in 3d SCFT’s, JHEP, 05, 060, 2018 · Zbl 1391.81157 · doi:10.1007/JHEP05(2018)060
[6] Brunner, I.; Schulz, J.; Tabler, A., Boundaries and supercurrent multiplets in 3D Landau-Ginzburg models, JHEP, 06, 046, 2019 · Zbl 1416.81182 · doi:10.1007/JHEP06(2019)046
[7] Costello, K.; Dimofte, T.; Gaiotto, D., Boundary Chiral Algebras and Holomorphic Twists, Commun. Math. Phys., 399, 1203, 2023 · Zbl 07678868 · doi:10.1007/s00220-022-04599-0
[8] Sugiyama, K.; Yoshida, Y., Supersymmetric indices on I × T^2, elliptic genera and dualities with boundaries, Nucl. Phys. B, 960, 115168, 2020 · Zbl 1472.81245 · doi:10.1016/j.nuclphysb.2020.115168
[9] Jockers, H.; Mayr, P.; Ninad, U.; Tabler, A., BPS indices, modularity and perturbations in quantum K-theory, JHEP, 02, 044, 2022 · Zbl 1522.81636 · doi:10.1007/JHEP02(2022)044
[10] M. Dedushenko and N. Nekrasov, Interfaces and quantum algebras. Part I. Stable envelopes, J. Geom. Phys.194 (2023) 104991 [arXiv:2109.10941] [INSPIRE]. · Zbl 1534.17015
[11] Zeng, K., Monopole operators and bulk-boundary relation in holomorphic topological theories, SciPost Phys., 14, 153, 2023 · Zbl 07902851 · doi:10.21468/SciPostPhys.14.6.153
[12] T. Okazaki and D.J. Smith, Seiberg-like dualities for orthogonal and symplectic 3d \(\mathcal{N} = 2\) gauge theories with boundaries, JHEP07 (2021) 231 [arXiv:2105.07450] [INSPIRE]. · Zbl 1468.81087
[13] Okazaki, T.; Smith, DJ, Web of Seiberg-like dualities for 3D N = 2 quivers, Phys. Rev. D, 105, 2022 · doi:10.1103/PhysRevD.105.086023
[14] Okazaki, T.; Smith, DJ, Boundary confining dualities and Askey-Wilson type q-beta integrals, JHEP, 08, 048, 2023 · Zbl 07748923 · doi:10.1007/JHEP08(2023)048
[15] Okazaki, T.; Smith, DJ, 3d exceptional gauge theories and boundary confinement, JHEP, 11, 199, 2023 · Zbl 07795914 · doi:10.1007/JHEP11(2023)199
[16] Benini, F.; Eager, R.; Hori, K.; Tachikawa, Y., Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups, Lett. Math. Phys., 104, 465, 2014 · Zbl 1312.58008 · doi:10.1007/s11005-013-0673-y
[17] F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic Genera of 2d \(\mathcal{N} = 2\) Gauge Theories, Commun. Math. Phys.333 (2015) 1241 [arXiv:1308.4896] [INSPIRE]. · Zbl 1321.81059
[18] Gadde, A.; Gukov, S., 2d Index and Surface operators, JHEP, 03, 080, 2014 · Zbl 1333.81399 · doi:10.1007/JHEP03(2014)080
[19] Dimofte, T.; Gaiotto, D.; Gukov, S., Gauge Theories Labelled by Three-Manifolds, Commun. Math. Phys., 325, 367, 2014 · Zbl 1292.57012 · doi:10.1007/s00220-013-1863-2
[20] Beem, C.; Dimofte, T.; Pasquetti, S., Holomorphic Blocks in Three Dimensions, JHEP, 12, 177, 2014 · Zbl 1333.81309 · doi:10.1007/JHEP12(2014)177
[21] Dimofte, T.; Gaiotto, D.; Gukov, S., 3-Manifolds and 3d Indices, Adv. Theor. Math. Phys., 17, 975, 2013 · Zbl 1297.81149 · doi:10.4310/ATMP.2013.v17.n5.a3
[22] B.C. Berndt, Ramanujan’s notebooks. Part III, Springer-Verlag, New York, NY, U.S.A. (1991) [doi:10.1007/978-1-4612-0965-2]. · Zbl 0733.11001
[23] T. Okazaki, Abelian dualities of \(\mathcal{N} \) = (0, 4) boundary conditions, JHEP08 (2019) 170 [arXiv:1905.07425] [INSPIRE]. · Zbl 1421.81099
[24] T. Okazaki, Abelian mirror symmetry of \(\mathcal{N} \) = (2, 2) boundary conditions, JHEP03 (2021) 163 [arXiv:2010.13177] [INSPIRE]. · Zbl 1461.81131
[25] R. Askey and J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, in Memoirs of the American Mathematical Society54, American Mathematical Society (1985) [doi:10.1090/memo/0319]. · Zbl 0572.33012
[26] B. Nassrallah and M. Rahman, Projection Formulas, a Reproducing Kernel and a Generating Function for q-Wilson Polynomials, SIAM J. Math. Anal.16 (1985) 186. · Zbl 0564.33009
[27] M. Rahman, An integral Representation of a_10ϕ_9and Continuous Bi-Orthogonal_10ϕ_9Rational Functions, Can. J. Math.38 (1986) 605. · Zbl 0599.33015
[28] R.A. Gustafson, Some q-Beta and Mellin-Barnes Integrals on Compact Lie Groups and Lie Algebras, Trans. Am. Math. Soc.341 (1994) 69. · Zbl 0796.33012
[29] R.A. Gustafson, Some q-Beta Integrals on SU(n) and Sp(n) That Generalize the Askey-Wilson and Nasrallah-Rahman Integrals, SIAM J. Math. Anal.25 (1994) 441. · Zbl 0819.33009
[30] M. Ito, Askey-Wilson type integrals associated with root systems, Ramanujan J.12 (2006) 131. · Zbl 1114.33026
[31] M.G. Alford, K. Benson, S.R. Coleman, J. March-Russell and F. Wilczek, Zero modes of non-Abelian vortices, Nucl. Phys. B349 (1991) 414 [INSPIRE].
[32] J. Preskill and L.M. Krauss, Local Discrete Symmetry and Quantum Mechanical Hair, Nucl. Phys. B341 (1990) 50 [INSPIRE]. · Zbl 0969.83511
[33] Bucher, M.; Lee, K-M; Preskill, J., On detecting discrete Cheshire charge, Nucl. Phys. B, 386, 27, 1992 · doi:10.1016/0550-3213(92)90174-A
[34] Alford, MG; Lee, K-M; March-Russell, J.; Preskill, J., Quantum field theory of non-Abelian strings and vortices, Nucl. Phys. B, 384, 251, 1992 · doi:10.1016/0550-3213(92)90468-Q
[35] Brekke, L.; Imbo, TD; Dykstra, H.; Falk, AF, Novel spin and statistical properties of non-Abelian vortices, Phys. Lett. B, 304, 127, 1993 · doi:10.1016/0370-2693(93)91411-F
[36] G.E. Andrews, The theory of partitions, in Cambridge Mathematical Library, Cambridge University Press, Cambridge, U.K. (1998). · Zbl 0996.11002
[37] L.J. Rogers, On Two Theorems of Combinatory Analysis and Some Allied Identities, Proc. Lond. Math. Soc.16 (1917) 315. · JFM 46.0109.01
[38] A. Rocha-Caridi, Vacuum Vector Representations of the Virasoro Algebra, in Vertex Operators in Mathematics and Physics, Mathematical Sciences Research Institute Publications3, Springer, New York, NY, U.S.A. (1985), pp. 451-473 [doi:10.1007/978-1-4613-9550-8_22]. · Zbl 0557.17005
[39] P. Paule and S. Radu, Rogers-Ramanujan Functions, Modular Functions, and Computer Algebra, in Advances in Computer Algebra, Springer Proceedings in Mathematics & Statistics226, Springer, Cham, Switzerland (2018), pp. 229-280 [doi:10.1007/978-3-319-73232-9_10]. · Zbl 1414.11123
[40] G.E. Andrews and D. Hickerson, Ramanujan’s “lost” notebook. Part VII. The sixth order mock theta functions, Adv. Math.89 (1991) 60. · Zbl 0739.11042
[41] D.R. Hickerson and E.T. Mortenson, Hecke-type double sums, Appell-Lerch sums, and mock theta functions. Part I, Proc. Lond. Math. Soc.109 (2014) 382. · Zbl 1367.11047
[42] S. Zwegers, Mock Theta Functions, Ph.D. Thesis, Utrecht University, The Netherlands (2002) [arXiv:0807.4834] [INSPIRE]. · Zbl 1194.11058
[43] A. Dabholkar, S. Murthy and D. Zagier, Quantum Black Holes, Wall Crossing, and Mock Modular Forms, arXiv:1208.4074 [INSPIRE].
[44] Ashok, SK; Dell’Aquila, E.; Troost, J., Higher Poles and Crossing Phenomena from Twisted Genera, JHEP, 08, 087, 2014 · doi:10.1007/JHEP08(2014)087
[45] Okazaki, T.; Smith, DJ, Mock modular index of M 2-M 5 brane systems, Phys. Rev. D, 96, 2017 · doi:10.1103/PhysRevD.96.026017
[46] Okazaki, T.; Smith, DJ, Topological M-strings and supergroup Wess-Zumino-Witten models, Phys. Rev. D, 94, 2016 · doi:10.1103/PhysRevD.94.065016
[47] W.N. Bailey, Identities of the Rogers-Ramanujan type, Proc. Lond. Math. Soc.50 (1948) 1. · Zbl 0031.39203
[48] L.J. Slater, Further Identities of the Rogers-Ramanujan Type, Proc. Lond. Math. Soc.54 (1952) 147. · Zbl 0046.27204
[49] J. Mc Laughlin, A.V. Sills and P. Zimmer, Rogers-Ramanujan-Slater Type Identities, Electron. J. Combinator.15 (2008) DS15 [arXiv:1901.00946]. · Zbl 1153.33005
[50] G.E. Andrews and B.C. Berndt, Ramanujan’s lost notebook. Part I, Springer, New York, NY, U.S.A. (2005). · Zbl 1075.11001
[51] M. Hajij, The tail of a quantum spin network, Ramanujan J.40 (2016) 135. · Zbl 1357.57036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.