×

Abelian mirror symmetry of \(\mathcal{N} = (2, 2)\) boundary conditions. (English) Zbl 1461.81131

Summary: We evaluate half-indices of \(\mathcal{N} = (2, 2)\) half-BPS boundary conditions in 3d \(\mathcal{N} = 4\) supersymmetric abelian gauge theories. We confirm that the Neumann boundary condition is dual to the generic Dirichlet boundary condition for its mirror theory as the half-indices perfectly match with each other. We find that a naive mirror symmetry between the exceptional Dirichlet boundary conditions defining the Verma modules of the quantum Coulomb and Higgs branch algebras does not always hold. The triangular matrix obtained from the elliptic stable envelope describes the precise mirror transformation of a collection of half-indices for the exceptional Dirichlet boundary conditions.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory

References:

[1] H.-J. Chung and T. Okazaki, (2, 2) and (0, 4) supersymmetric boundary conditions in 3d \(\mathcal{N} = 4\) theories and type IIB branes, Phys. Rev. D96 (2017) 086005 [arXiv:1608.05363] [INSPIRE].
[2] A. Hanany and T. Okazaki, (0, 4) brane box models, JHEP03 (2019) 027 [arXiv:1811.09117] [INSPIRE]. · Zbl 1414.81244
[3] Okazaki, T., Abelian dualities of \(\mathcal{N} \) = (0, 4) boundary conditions, JHEP, 08, 170 (2019) · Zbl 1421.81099 · doi:10.1007/JHEP08(2019)170
[4] Intriligator, KA; Seiberg, N., Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B, 387, 513 (1996) · doi:10.1016/0370-2693(96)01088-X
[5] J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, Mirror symmetry in three-dimensional theories, SL(2, ℤ) and D-brane moduli spaces, Nucl. Phys. B493 (1997) 148 [hep-th/9612131] [INSPIRE]. · Zbl 0973.14508
[6] Kapustin, A.; Strassler, MJ, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP, 04, 021 (1999) · Zbl 0953.81097 · doi:10.1088/1126-6708/1999/04/021
[7] Costello, K.; Gaiotto, D., Vertex Operator Algebras and 3d \(\mathcal{N} = 4\) gauge theories, JHEP, 05, 018 (2019) · Zbl 1416.81185 · doi:10.1007/JHEP05(2019)018
[8] Gaiotto, D.; Rapčák, M., Vertex Algebras at the Corner, JHEP, 01, 160 (2019) · Zbl 1409.81148 · doi:10.1007/JHEP01(2019)160
[9] Creutzig, T.; Gaiotto, D., Vertex Algebras for S-duality, Commun. Math. Phys., 379, 785 (2020) · Zbl 1481.17041 · doi:10.1007/s00220-020-03870-6
[10] Frenkel, E.; Gaiotto, D., Quantum Langlands dualities of boundary conditions, D-modules, and conformal blocks, Commun. Num. Theor. Phys., 14, 199 (2020) · Zbl 1445.14024 · doi:10.4310/CNTP.2020.v14.n2.a1
[11] Gaiotto, D.; Okazaki, T., Dualities of Corner Configurations and Supersymmetric Indices, JHEP, 11, 056 (2019) · Zbl 1429.81058 · doi:10.1007/JHEP11(2019)056
[12] Bullimore, M.; Dimofte, T.; Gaiotto, D., The Coulomb Branch of 3d \(\mathcal{N} = 4\) Theories, Commun. Math. Phys., 354, 671 (2017) · Zbl 1379.81072 · doi:10.1007/s00220-017-2903-0
[13] Bullimore, M.; Dimofte, T.; Gaiotto, D.; Hilburn, J., Boundaries, Mirror Symmetry, and Symplectic Duality in 3d \(\mathcal{N} = 4\) Gauge Theory, JHEP, 10, 108 (2016) · Zbl 1390.81309 · doi:10.1007/JHEP10(2016)108
[14] R. Bielawski, Complete hyperKähler 4n manifolds with n commuting triHamiltonian vector fields, math/9808134 [INSPIRE].
[15] Bielawski, R.; Dancer, AS, The geometry and topology of toric hyperk¨ahler manifolds, Commun. Anal. Geom., 8, 727 (2000) · Zbl 0992.53034 · doi:10.4310/CAG.2000.v8.n4.a2
[16] N.J. Proudfoot, A survey of hypertoric geometry and topology, in Contemporary Mathematics. Vol. 460: Toric topology, AMS Press, Providence U.S.A. (2008), pg. 323. · Zbl 1151.53042
[17] Braden, T.; Licata, A.; Proudfoot, N.; Webster, B., Hypertoric category \(\mathcal{O} \), Adv. Math., 231, 1487 (2012) · Zbl 1284.16029 · doi:10.1016/j.aim.2012.06.019
[18] Braden, T.; Proudfoot, N.; Webster, B., Quantizations of conical symplectic resolutions I: local and global structure, Astérisque, 384, 1 (2016) · Zbl 1360.53001
[19] Braden, T.; Licata, A.; Proudfoot, N.; Webster, B., Quantizations of conical symplectic resolutions II: category \(\mathcal{O}\) and symplectic duality, Astérisque, 384, 75 (2016) · Zbl 1360.53001
[20] Gadde, A.; Gukov, S.; Putrov, P., Walls, Lines, and Spectral Dualities in 3d Gauge Theories, JHEP, 05, 047 (2014) · doi:10.1007/JHEP05(2014)047
[21] Gadde, A.; Gukov, S.; Putrov, P., Fivebranes and 4-manifolds, Prog. Math., 319, 155 (2016) · Zbl 1373.81295 · doi:10.1007/978-3-319-43648-7_7
[22] Y. Yoshida and K. Sugiyama, Localization of three-dimensional \(\mathcal{N} = 2\) supersymmetric theories on S^1 × D^2, PTEP2020 (2020) 113B02 [arXiv:1409.6713] [INSPIRE].
[23] Dimofte, T.; Gaiotto, D.; Paquette, NM, Dual boundary conditions in 3d SCFT’s, JHEP, 05, 060 (2018) · Zbl 1391.81157 · doi:10.1007/JHEP05(2018)060
[24] Pasquetti, S., Factorisation of N = 2 Theories on the Squashed 3-Sphere, JHEP, 04, 120 (2012) · Zbl 1348.81430 · doi:10.1007/JHEP04(2012)120
[25] Beem, C.; Dimofte, T.; Pasquetti, S., Holomorphic Blocks in Three Dimensions, JHEP, 12, 177 (2014) · Zbl 1333.81309 · doi:10.1007/JHEP12(2014)177
[26] M. Bullimore, S. Crew and D. Zhang, Boundaries, Vermas, and Factorisation, arXiv:2010.09741 [INSPIRE].
[27] S. Crew, N. Dorey and D. Zhang, Blocks and Vortices in the 3d ADHM Quiver Gauge Theory, arXiv:2010.09732 [INSPIRE].
[28] Assel, B.; Gomis, J., Mirror Symmetry And Loop Operators, JHEP, 11, 055 (2015) · Zbl 1388.81761 · doi:10.1007/JHEP11(2015)055
[29] Dimofte, T.; Garner, N.; Geracie, M.; Hilburn, J., Mirror symmetry and line operators, JHEP, 02, 075 (2020) · Zbl 1505.81070 · doi:10.1007/JHEP02(2020)075
[30] A. Okounkov, Lectures on K-theoretic computations in enumerative geometry, arXiv:1512.07363 [INSPIRE]. · Zbl 1402.19001
[31] A. Okounkov and A. Smirnov, Quantum difference equation for Nakajima varieties, arXiv:1602.09007 [INSPIRE].
[32] M. Aganagic and A. Okounkov, Elliptic stable envelopes, arXiv:1604.00423 [INSPIRE]. · Zbl 1524.14098
[33] Aganagic, M.; Frenkel, E.; Okounkov, A., Quantum q- Langlands Correspondence, Trans. Moscow Math. Soc., 79, 1 (2018) · Zbl 1422.22021 · doi:10.1090/mosc/278
[34] R. Rimányi, A. Smirnov, A. Varchenko and Z. Zhou, 3d Mirror Symmetry and Elliptic Stable Envelopes, arXiv:1902.03677 [INSPIRE].
[35] Rimányi, R.; Smirnov, A.; Varchenko, A.; Zhou, Z., Three-Dimensional Mirror Self-Symmetry of the Cotangent Bundle of the Full Flag Variety, SIGMA, 15, 093 (2019) · Zbl 1451.53116
[36] T. Hikita, Elliptic canonical bases for toric hyper-Kahler manifolds, arXiv:2003.03573.
[37] A. Smirnov and Z. Zhou, 3d Mirror Symmetry and Quantum K-theory of Hypertoric Varieties, arXiv:2006.00118 [INSPIRE].
[38] Y. Kononov and A. Smirnov, Pursuing quantum difference equations II: 3D-mirror symmetry, arXiv:2008.06309 [INSPIRE].
[39] A. Okounkov, Inductive construction of stable envelopes and applications, II. Nonabelian actions. Integral solutions and monodromy of quantum difference equations, arXiv:2010.13217 [INSPIRE].
[40] Rozansky, L.; Witten, E., HyperKähler geometry and invariants of three manifolds, Selecta Math., 3, 401 (1997) · Zbl 0908.53027 · doi:10.1007/s000290050016
[41] Blau, M.; Thompson, G., Aspects of N_T ≥ 2 topological gauge theories and D-branes, Nucl. Phys. B, 492, 545 (1997) · Zbl 0996.58504 · doi:10.1016/S0550-3213(97)00161-2
[42] Benini, F.; Eager, R.; Hori, K.; Tachikawa, Y., Elliptic genera of two-dimensional N = 2 gauge theories with rank-one gauge groups, Lett. Math. Phys., 104, 465 (2014) · Zbl 1312.58008 · doi:10.1007/s11005-013-0673-y
[43] Benini, F.; Eager, R.; Hori, K.; Tachikawa, Y., Elliptic Genera of 2d \(\mathcal{N} = 2\) Gauge Theories, Commun. Math. Phys., 333, 1241 (2015) · Zbl 1321.81059 · doi:10.1007/s00220-014-2210-y
[44] Gadde, A.; Gukov, S., 2d Index and Surface operators, JHEP, 03, 080 (2014) · Zbl 1333.81399 · doi:10.1007/JHEP03(2014)080
[45] K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE]. · Zbl 1044.14018
[46] E. Witten, Fivebranes and Knots, arXiv:1101.3216 [INSPIRE]. · Zbl 1241.57041
[47] R. Mazzeo and E. Witten, The Nahm Pole Boundary Condition, arXiv:1311.3167 [INSPIRE]. · Zbl 1335.81111
[48] Gaiotto, D.; Witten, E., Supersymmetric Boundary Conditions in N = 4 Super Yang-Mills Theory, J. Statist. Phys., 135, 789 (2009) · Zbl 1178.81180 · doi:10.1007/s10955-009-9687-3
[49] Gaiotto, D.; Witten, E., S-duality of Boundary Conditions In N = 4 Super Yang-Mills Theory, Adv. Theor. Math. Phys., 13, 721 (2009) · Zbl 1206.81082 · doi:10.4310/ATMP.2009.v13.n3.a5
[50] A. Hashimoto, P. Ouyang and M. Yamazaki, Boundaries and defects of \(\mathcal{N} = 4\) SYM with 4 supercharges. Part I. Boundary/junction conditions, JHEP10 (2014) 107 [arXiv:1404.5527] [INSPIRE]. · Zbl 1333.81382
[51] A. Hashimoto, P. Ouyang and M. Yamazaki, Boundaries and defects of \(\mathcal{N} = 4\) SYM with 4 supercharges. Part II. Brane constructions and 3d \(\mathcal{N} = 2\) field theories, JHEP10 (2014) 108 [arXiv:1406.5501] [INSPIRE]. · Zbl 1333.81381
[52] Okazaki, T.; Smith, DJ, Singular BPS boundary conditions in \(\mathcal{N} \) = (2, 2) supersymmetric gauge theories, JHEP, 03, 043 (2021) · Zbl 1461.81099 · doi:10.1007/JHEP03(2021)043
[53] Hanany, A.; Witten, E., Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B, 492, 152 (1997) · Zbl 0996.58509 · doi:10.1016/S0550-3213(97)80030-2
[54] Kodera, R.; Nakajima, H., Quantized Coulomb branches of Jordan quiver gauge theories and cyclotomic rational Cherednik algebras, Proc. Symp. Pure Math., 98, 49 (2018) · Zbl 1469.20006 · doi:10.1090/pspum/098/01720
[55] Gaiotto, D.; Okazaki, T., Sphere correlation functions and Verma modules, JHEP, 02, 133 (2020) · Zbl 1435.81215 · doi:10.1007/JHEP02(2020)133
[56] M. Dedushenko and D. Gaiotto, Algebras, traces, and boundary correlators in \(\mathcal{N} = 4\) SYM, arXiv:2009.11197 [INSPIRE].
[57] M. Dedushenko and D. Gaiotto, Correlators on the wall and \({\mathfrak{sl}}_n\) spin chain, arXiv:2009.11198 [INSPIRE].
[58] Kinney, J.; Maldacena, JM; Minwalla, S.; Raju, S., An Index for 4 dimensional super conformal theories, Commun. Math. Phys., 275, 209 (2007) · Zbl 1122.81070 · doi:10.1007/s00220-007-0258-7
[59] T. Okazaki, Mirror symmetry of 3D \(\mathcal{N} = 4\) gauge theories and supersymmetric indices, Phys. Rev. D100 (2019) 066031 [arXiv:1905.04608] [INSPIRE].
[60] Dimofte, T.; Gaiotto, D., An E7 Surprise, JHEP, 10, 129 (2012) · doi:10.1007/JHEP10(2012)129
[61] Schellekens, AN; Warner, NP, Anomalies and Modular Invariance in String Theory, Phys. Lett. B, 177, 317 (1986) · doi:10.1016/0370-2693(86)90760-4
[62] Witten, E., Elliptic Genera and Quantum Field Theory, Commun. Math. Phys., 109, 525 (1987) · Zbl 0625.57008 · doi:10.1007/BF01208956
[63] Eguchi, T.; Ooguri, H.; Taormina, A.; Yang, S-K, Superconformal Algebras and String Compactification on Manifolds with SU(N) Holonomy, Nucl. Phys. B, 315, 193 (1989) · doi:10.1016/0550-3213(89)90454-9
[64] Kawai, T.; Yamada, Y.; Yang, S-K, Elliptic genera and N = 2 superconformal field theory, Nucl. Phys. B, 414, 191 (1994) · Zbl 0980.58500 · doi:10.1016/0550-3213(94)90428-6
[65] Witten, E., On the Landau-Ginzburg description of N = 2 minimal models, Int. J. Mod. Phys. A, 9, 4783 (1994) · Zbl 0985.81718 · doi:10.1142/S0217751X9400193X
[66] Cordova, C.; Gaiotto, D.; Shao, S-H, Surface Defect Indices and 2d-4d BPS States, JHEP, 12, 078 (2017) · Zbl 1383.81195 · doi:10.1007/JHEP12(2017)078
[67] Jeffrey, LC; Kirwan, FC, Localization for nonabelian group actions, Topology, 34, 291 (1995) · Zbl 0833.55009 · doi:10.1016/0040-9383(94)00028-J
[68] Hardy, GH, Ramanujan. Twelve lectures on subjects suggested by his life and work (1940), Cambridge U.K.: Cambridge University Press, Cambridge U.K. · Zbl 0025.10505
[69] Andrews, GE, On Ramanujan’s summation of_1ψ_1(a; b; z), Proc. Am. Math. Soc., 22, 552 (1969) · Zbl 0176.01901
[70] Hahn, W., Über Orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nachr., 2, 4 (1949) · Zbl 0031.39001 · doi:10.1002/mana.19490020103
[71] Jackson, M., On Lerch’s transcendant and the basic bilateral hypergeometric series_2Ψ_2, J. London Math. Soc., 25, 189 (1950) · Zbl 0036.32601 · doi:10.1112/jlms/s1-25.3.189
[72] Ismail, MEH, A simple proof of Ramanujan’s_1ψ_1sum, Proc. Am. Math. Soc., 63, 185 (1977) · Zbl 0351.33002
[73] Andrews, GE; Askey, R., A simple proof of Ramanujan’s summation of the_1ψ_1, Aequ. Math., 18, 333 (1978) · Zbl 0401.33002 · doi:10.1007/BF03031684
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.