×

A general result on the mean integrated squared error of the hard thresholding wavelet estimator under \(\alpha\)-mixing dependence. (English) Zbl 1307.62103

Summary: We consider the estimation of an unknown function \(f\) for weakly dependent data (\(\alpha\)-mixing) in a general setting. Our contribution is theoretical: we prove that a hard thresholding wavelet estimator attains a sharp rate of convergence under the mean integrated squared error (MISE) over Besov balls without imposing too restrictive assumptions on the model. Applications are given for two types of inverse problems: the deconvolution density estimation and the density estimation in a GARCH-type model, both improve existing results in this dependent context. Another application concerns the regression model with random design.

MSC:

62G07 Density estimation
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)

References:

[1] P. Doukhan, Mixing. Properties and Examples, vol. 85 of Lecture Notes in Statistics, Springer, New York, NY, USA, 1994. · Zbl 0801.60027
[2] M. Carrasco and X. Chen, “Mixing and moment properties of various GARCH and stochastic volatility models,” Econometric Theory, vol. 18, no. 1, pp. 17-39, 2002. · Zbl 1181.62125 · doi:10.1017/S0266466602181023
[3] R. C. Bradley, Introduction to Strong Mixing Conditions, Volume 1, 2, 3, Kendrick Press, 2007. · Zbl 1134.60004
[4] P. M. Robinson, “Nonparametric estimators for time series,” Journal of Time Series Analysis, vol. 4, pp. 185-207, 1983. · Zbl 0544.62082 · doi:10.1111/j.1467-9892.1983.tb00368.x
[5] G. G. Roussas, “Nonparametric estimation in mixing sequences of random variables,” Journal of Statistical Planning and Inference, vol. 18, no. 2, pp. 135-149, 1987. · Zbl 0658.62048 · doi:10.1016/0378-3758(88)90001-8
[6] G. G. Roussas, “Nonparametric regression estimation under mixing conditions,” Stochastic Processes and their Applications, vol. 36, no. 1, pp. 107-116, 1990. · Zbl 0699.62038 · doi:10.1016/0304-4149(90)90045-T
[7] Y. K. Truong and C. J. Stone, “Nonparametric function estimation involving time series,” The Annals of Statistics, vol. 20, pp. 77-97, 1992. · Zbl 0764.62038 · doi:10.1214/aos/1176348513
[8] L. H. Tran, “Nonparametric function estimation for time series by local average estimators,” The Annals of Statistics, vol. 21, pp. 1040-1057, 1993. · Zbl 0790.62037 · doi:10.1214/aos/1176349163
[9] E. Masry, “Multivariate local polynomial regression for time series: uniform strong consistency and rates,” Journal of Time Series Analysis, vol. 17, no. 6, pp. 571-599, 1996. · Zbl 0876.62075 · doi:10.1111/j.1467-9892.1996.tb00294.x
[10] E. Masry, “Multivariate regression estimation local polynomial fitting for time series,” Stochastic Processes and their Applications, vol. 65, no. 1, pp. 81-101, 1996. · Zbl 0889.60039 · doi:10.1016/S0304-4149(96)00095-6
[11] E. Masry and J. Fan, “Local polynomial estimation of regression functions for mixing processes,” Scandinavian Journal of Statistics, vol. 24, no. 2, pp. 165-179, 1997. · Zbl 0881.62047 · doi:10.1111/1467-9469.00056
[12] D. Bosq, Nonparametric Statistics for Stochastic Processes. Estimation and Prediction, vol. 110 of Lecture Notes in Statistics, Springer, New York, NY, USA, 1998. · Zbl 0902.62099 · doi:10.1007/978-1-4612-1718-3
[13] E. Liebscher, “Estimation of the density and the regression function under mixing conditions,” Statistics and Decisions, vol. 19, no. 1, pp. 9-26, 2001. · Zbl 1179.62051
[14] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,” Biometrika, vol. 81, no. 3, pp. 425-455, 1994. · Zbl 0815.62019 · doi:10.1093/biomet/81.3.425
[15] D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage,” Journal of the American Statistical Association, vol. 90, pp. 1200-1224, 1995. · Zbl 0869.62024 · doi:10.2307/2291512
[16] D. Donoho, I. Johnstone, G. Kerkyacharian, and D. Picard, “Wavelet shrinkage: asymptopia?” Journal of the Royal Statistical Society B, vol. 57, pp. 301-369, 1995. · Zbl 0827.62035
[17] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, “Density estimation by wavelet thresholding,” Annals of Statistics, vol. 24, no. 2, pp. 508-539, 1996. · Zbl 0860.62032 · doi:10.1214/aos/1032894451
[18] A. Antoniadis, “Wavelets in statistics: a review (with discussion),” Journal of the Italian Statistical Society, vol. 6, pp. 97-144, 1997.
[19] W. Hardle, G. Kerkyacharian, D. Picard, and A. Tsybakov, Wavelet, Approximation and Statistical Applications, vol. 129 of Lectures Notes in Statistics, Springer, New York, NY, USA, 1998.
[20] F. Leblanc, “Wavelet linear density estimator for a discrete-time stochastic process: Lp-losses,” Statistics and Probability Letters, vol. 27, no. 1, pp. 71-84, 1996. · Zbl 0845.62033 · doi:10.1016/0167-7152(95)00046-1
[21] K. Tribouley and G. Viennet, “Lp adaptive density estimation in a alpha-mixing framework,” Annales de l’institut Henri Poincare B, vol. 34, no. 2, pp. 179-208, 1998. · Zbl 0941.62041 · doi:10.1016/S0246-0203(98)80029-0
[22] E. Masry, “Wavelet-based estimation of multivariate regression functions in besov spaces,” Journal of Nonparametric Statistics, vol. 12, no. 2, pp. 283-308, 2000. · Zbl 0982.62038 · doi:10.1080/10485250008832809
[23] P. N. Patil and Y. K. Truong, “Asymptotics for wavelet based estimates of piecewise smooth regression for stationary time series,” Annals of the Institute of Statistical Mathematics, vol. 53, no. 1, pp. 159-178, 2001. · Zbl 0995.62092 · doi:10.1023/A:1017928823619
[24] H. Doosti, M. Afshari, and H. A. Niroumand, “Wavelets for nonparametric stochastic regression with mixing stochastic process,” Communications in Statistics, vol. 37, no. 3, pp. 373-385, 2008. · Zbl 1318.62130 · doi:10.1080/03610920701653003
[25] H. Doosti and H. A. Niroumand, “Multivariate stochastic regression estimation by wavelet methods for stationary time series,” Pakistan Journal of Statistics, vol. 27, no. 1, pp. 37-46, 2009.
[26] H. Doosti, M. S. Islam, Y. P. Chaubey, and P. Góra, “Two-dimensional wavelets for nonlinear autoregressive models with an application in dynamical system,” Italian Journal of Pure and Applied Mathematics, no. 27, pp. 39-62, 2010. · Zbl 1328.62202
[27] J. Cai and H. Liang, “Nonlinear wavelet density estimation for truncated and dependent observations,” International Journal of Wavelets, Multiresolution and Information Processing, vol. 9, no. 4, pp. 587-609, 2011. · Zbl 1219.62063 · doi:10.1142/S0219691311004237
[28] S. Niu and H. Liang, “Nonlinear wavelet estimation of conditional density under left-truncated and \alpha -mixing assumptions,” International Journal of Wavelets, Multiresolution and Information Processing, vol. 9, no. 6, pp. 989-1023, 2011. · Zbl 1279.62085 · doi:10.1142/S0219691311004419
[29] F. Benatia and D. Yahia, “Nonlinear wavelet regression function estimator for censored dependent data,” Journal Afrika Statistika, vol. 7, no. 1, pp. 391-411, 2012. · Zbl 1258.62046
[30] C. Chesneau, “On the adaptive wavelet deconvolution of a density for strong mixing sequences,” Journal of the Korean Statistical Society, vol. 41, no. 4, pp. 423-436, 2012. · Zbl 1296.62079 · doi:10.1016/j.jkss.2012.01.005
[31] C. Chesneau, “Wavelet estimation of a density in a GARCH-type model,” Communications in Statistics, vol. 42, no. 1, pp. 98-117, 2013. · Zbl 1298.62061 · doi:10.1080/03610926.2011.575516
[32] C. Chesneau, “On the adaptive wavelet estimation of a multidimensional regression function under alpha-mixing dependence: beyond the standard assumptions on the noise,” Commentationes Mathematicae Universitatis Carolinae, vol. 4, pp. 527-556, 2013. · Zbl 1313.62058
[33] Y. P. Chaubey and E. Shirazi, “On MISE of a nonlinear wavelet estimator of the regression function based on biased data under strong mixing,” Communications in Statistics. In press. · Zbl 1388.62094
[34] M. Abbaszadeh and M. Emadi, “Wavelet density estimation and statistical evidences role for a garch model in the weighted distribution,” Applied Mathematics, vol. 4, no. 2, pp. 10-416, 2013.
[35] B. Delyon and A. Juditsky, “On minimax wavelet estimators,” Applied and Computational Harmonic Analysis, vol. 3, no. 3, pp. 215-228, 1996. · Zbl 0865.62023 · doi:10.1006/acha.1996.0017
[36] G. Kerkyacharian and D. Picard, “Thresholding algorithms, maxisets and well-concentrated bases,” Test, vol. 9, no. 2, pp. 283-344, 2000. · Zbl 1107.62323 · doi:10.1007/BF02595738
[37] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992. · Zbl 0776.42018
[38] A. Cohen, I. Daubechies, and P. Vial, “Wavelets on the interval and fast wavelet transforms,” Applied and Computational Harmonic Analysis, vol. 1, no. 1, pp. 54-81, 1993. · Zbl 0795.42018 · doi:10.1006/acha.1993.1005
[39] S. Mallat, A Wavelet Tour of Signal Processing, The sparse way, with contributions from Gabriel Peyralphae, Elsevier/Academic Press, Amsterdam, The Netherlands, 3rd edition, 2009. · Zbl 1170.94003
[40] Y. Meyer, Ondelettes et Opalphaerateurs, Hermann, Paris, France, 1990.
[41] V. Genon-Catalot, T. Jeantheau, and C. Larédo, “Stochastic volatility models as hidden Markov models and statistical applications,” Bernoulli, vol. 6, no. 6, pp. 1051-1079, 2000. · Zbl 0966.62048 · doi:10.2307/3318471
[42] J. Fan and J. Koo, “Wavelet deconvolution,” IEEE Transactions on Information Theory, vol. 48, no. 3, pp. 734-747, 2002. · Zbl 1071.94511 · doi:10.1109/18.986021
[43] A. B. Tsybakov, Introduction alphaa l’estimation non-paramalphaetrique, Springer, New York, NY, USA, 2004.
[44] E. Masry, “Strong consistency and rates for deconvolution of multivariate densities of stationary processes,” Stochastic Processes and their Applications, vol. 47, no. 1, pp. 53-74, 1993. · Zbl 0797.62071 · doi:10.1016/0304-4149(93)90094-K
[45] R. Kulik, “Nonparametric deconvolution problem for dependent sequences,” Electronic Journal of Statistics, vol. 2, pp. 722-740, 2008. · Zbl 1320.62073 · doi:10.1214/07-EJS154
[46] F. Comte, J. Dedecker, and M. L. Taupin, “Adaptive density deconvolution with dependent inputs,” Mathematical Methods of Statistics, vol. 17, no. 2, pp. 87-112, 2008. · Zbl 1282.62087 · doi:10.3103/S1066530708020014
[47] H. van Zanten and P. Zareba, “A note on wavelet density deconvolution for weakly dependent data,” Statistical Inference for Stochastic Processes, vol. 11, no. 2, pp. 207-219, 2008. · Zbl 1204.62051 · doi:10.1007/s11203-007-9013-0
[48] W. Hardle, Applied Nonparametric Regression, Cambridge University Press, Cambridge, UK, 1990.
[49] V. A. Vasiliev, “One investigation method of a ratios type estimators,” in Proceedings of the 16th IFAC Symposium on System Identialphacation, pp. 1-6, Brussels, Belgium, July 2012, (in progress).
[50] Y. Davydov, “The invariance principle for stationary processes,” Theory of Probability and Its Applications, vol. 15, no. 3, pp. 498-509, 1970. · Zbl 0219.60030 · doi:10.1137/1115050
[51] C. Chesneau, “Wavelet estimation via block thresholding: a minimax study under Lp-risk,” Statistica Sinica, vol. 18, no. 3, pp. 1007-1024, 2008. · Zbl 1534.62034
[52] C. Chesneau and H. Doosti, “Wavelet linear density estimation for a GARCH model under various dependence structures,” Journal of the Iranian Statistical Society, vol. 11, no. 1, pp. 1-21, 2012. · Zbl 1319.62081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.