×

On disjointly homogeneous Orlicz-Lorentz spaces. (English. Russian original) Zbl 1467.46026

Math. Notes 108, No. 5, 631-642 (2020); translation from Mat. Zametki 108, No. 5, 643-656 (2020).
Summary: A characterization of disjointly homogeneous Orlicz-Lorentz function spaces \(\Lambda_{\varphi,w}\) is obtained. It is used to find necessary and sufficient conditions for an analog of the classical Dunford-Pettis theorem about the equi-integrability of weakly compact sets in \(L_1\) to hold in the space \(\Lambda_{\varphi,w}\). It is also shown that there exists an Orlicz function \(\Phi\) with the upper Matuszewska-Orlicz index equal to 1 for which such an analog in the space \(\Lambda_{\Phi,w}\) does not hold. This answers a recent question of Leśnik, Maligranda, and Tomaszewsk [K. Leśnik et al., “Weakly compact sets and weakly compact pointwise multipliers in Banach function lattices”, Preprint (2019), arXiv:1912.08164].

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI

References:

[1] Albiac, F.; Kalton, N. J., Topics in Banach Space Theory (2006), New York: Springer, New York · Zbl 1094.46002
[2] Astashkin, S. V.; Kalton, N.; Sukochev, F. A., Cesàro mean convergence of martingale differences in rearrangement invariant spaces, Positivity, 12, 3, 387-406 (2008) · Zbl 1160.46020 · doi:10.1007/s11117-007-2146-y
[3] Lindenstrauss, J.; Tzafriri, L., On Orlicz sequence spaces. III, Israel J. Math., 14, 368-389 (1973) · Zbl 0262.46031 · doi:10.1007/BF02764715
[4] Kaminska, A.; Raynaud, Y., Isomorphic copies in the lattice \(E\) and its symmetrization \(E^*\) with applications to Orlicz-Lorentz spaces, J. Funct. Anal., 257, 1, 271-331 (2009) · Zbl 1183.46030 · doi:10.1016/j.jfa.2009.02.016
[5] K. Leśnik, L. Maligranda, and J. Tomaszewski, Weakly Compact Sets and Weakly Compact Pointwise Multipliers in Banach Function Lattices, arXiv: 1912.08164 (2019).
[6] Krein, S. G.; Petunin, Yu. I.; Semenov, E. M., Interpolation of Linear Operators (1978), Moscow: Nauka, Moscow · Zbl 0499.46044
[7] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces. II. Function Spaces (1979), Berlin: Springer- Verlag, Berlin · Zbl 0403.46022 · doi:10.1007/978-3-662-35347-9
[8] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces. I. Sequence Spaces (1977), Berlin: Springer- Verlag, Berlin · Zbl 0362.46013
[9] Maligranda, L., Orlicz Spaces and Interpolation (1989), Campinas: Univ. Campinas, Campinas · Zbl 0874.46022
[10] Kaminska, A., Some remarks on Orlicz-Lorentz spaces, Math. Nachr., 147, 29-38 (1990) · Zbl 0742.46013 · doi:10.1002/mana.19901470104
[11] Krasnosel’skii, M. A.; Rutitskii, Ya. B., Convex Functions and Orlicz Spaces (1958), Moscow: Gos. Izdat. Fiz.-Mat. Lit., Moscow · Zbl 0084.10104
[12] Flores, J.; Tradacete, P.; Troitsky, V. G., Disjointly homogeneous Banach lattices and compact products of operators, J. Math. Anal. Appl., 354, 657-663 (2009) · Zbl 1171.47016 · doi:10.1016/j.jmaa.2009.01.025
[13] Flores, J.; Hernandez, F. L.; Semenov, E. M.; Tradacete, P., Strictly singular and power-compact operators on Banach lattices, Israel J. Math., 188, 323-352 (2012) · Zbl 1262.46017 · doi:10.1007/s11856-011-0152-z
[14] Flores, J.; Hernandez, F. L.; Spinu, E.; Tradacete, P.; Troitsky, V. G., Disjointly homogeneous Banach lattices: Duality and complementation, J. Funct. Anal., 266, 9, 5858-5885 (2014) · Zbl 1315.46024 · doi:10.1016/j.jfa.2013.12.024
[15] Astashkin, S. V., Duality problem for disjointly homogeneous rearrangement invariant spaces, J. Funct. Anal., 276, 10, 3205-3225 (2019) · Zbl 1415.46020 · doi:10.1016/j.jfa.2018.08.020
[16] Bennett, C.; Sharpley, R., Interpolation of Operators (1988), Acad. Press: Boston, MA, Acad. Press · Zbl 0647.46057
[17] Astashkin, S. V., Rearrangement invariant spaces satisfying Dunford-Pettis criterion of weak compactness, Functional Analysis and Geometry, 733, 45-59 (2019) · Zbl 1443.46018 · doi:10.1090/conm/733/14732
[18] Lavergne, E., Reflexive subspaces of some Orlicz spaces, Colloq. Math., 113, 2, 333-340 (2008) · Zbl 1152.46018 · doi:10.4064/cm113-2-13
[19] Strakhov, S. I., Characterization of the Orlicz spaces whose convergence is equivalent to convergence in measure on reflexive subspaces, Siberian Math. J., 60, 4, 690-698 (2019) · Zbl 1469.46026 · doi:10.1134/S0037446619040141
[20] Astashkin, S. V.; Strakhov, S. I., On symmetric spaces with convergence in measure on reflexive subspaces, Russian Math. (Iz. VUZ), 62, 8, 1-8 (2018) · Zbl 1407.46022 · doi:10.3103/S1066369X18080017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.