×

Transport across interfaces in symmetric orbifolds. (English) Zbl 07774773

Summary: We examine how conformal boundaries encode energy transport coefficients – namely transmission and reflection probabilities – of corresponding conformal interfaces in symmetric orbifold theories. These constitute a large class of irrational theories and are closely related to holographic setups. Our central goal is to compare such coefficients at the orbifold point (a field theory calculation) against their values when the orbifold is highly deformed (a gravity calculation) – an approach akin to past AdS/CFT-guided comparisons of physical quantities at strong versus weak coupling. At the orbifold point, we find that the (weighted-average) transport coefficients are simply averages of coefficients in the underlying seed theory. We then focus on the symmetric orbifold of the \(\mathbb{T}^4\) sigma model interface CFT dual to type IIB supergravity on the 3d Janus solution. We compare the holographic transmission coefficient, which was found by [C. Bachas et al., Phys. Rev. Lett. 131, No. 2, Article ID 021601, 7 p. (2023; doi:10.1103/PhysRevLett.131.021601)], to that of the orbifold point. We find that the profile of the transmission coefficient substantially increases with the coupling, in contrast to boundary entropy. We also present some related ideas about twisted-sector data encoded by boundary states.

MSC:

81-XX Quantum theory

References:

[1] C. Bachas et al., Energy Transport for Thick Holographic Branes, Phys. Rev. Lett.131 (2023) 021601 [arXiv:2212.14058] [INSPIRE].
[2] Cardy, JL, Conformal Invariance and Surface Critical Behavior, Nucl. Phys. B, 240, 514 (1984) · doi:10.1016/0550-3213(84)90241-4
[3] J.L. Cardy, Boundary conformal field theory, hep-th/0411189 [INSPIRE]. · Zbl 1246.81318
[4] I. Affleck, Conformal field theory approach to the Kondo effect, Acta Phys. Polon. B26 (1995) 1869 [cond-mat/9512099] [INSPIRE]. · Zbl 0966.81561
[5] G. Morandi, P. Sodano, A. Tagliacozzo and V. Tognetti, Field Theories for Low-Dimensional Condensed Matter Systems, Springer Berlin Heidelberg (2000) [doi:10.1007/978-3-662-04273-1]. · Zbl 0997.82509
[6] A. Sagnotti, Open Strings and their Symmetry Groups, in the proceedings of the NATO Advanced Summer Institute on Nonperturbative Quantum Field Theory (Cargese Summer Institute), Cargese, France, 16-30 July 1987 (1987) [hep-th/0208020] [INSPIRE].
[7] Polchinski, J., Dirichlet Branes and Ramond-Ramond charges, Phys. Rev. Lett., 75, 4724 (1995) · Zbl 1020.81797 · doi:10.1103/PhysRevLett.75.4724
[8] Gaberdiel, MR, D-branes from conformal field theory, Fortsch. Phys., 50, 783 (2002) · Zbl 1008.81079 · doi:10.1002/1521-3978(200209)50:8/9<783::AID-PROP783>3.0.CO;2-J
[9] A. Recknagel and V. Schomerus, Boundary Conformal Field Theory and the Worldsheet Approach to D-Branes, Cambridge Monographs on Mathematical Physics, Cambridge University Press (2013) [doi:10.1017/CBO9780511806476] [INSPIRE]. · Zbl 1332.81005
[10] Affleck, I.; Ludwig, AWW, Universal noninteger ‘ground state degeneracy’ in critical quantum systems, Phys. Rev. Lett., 67, 161 (1991) · Zbl 0990.81566 · doi:10.1103/PhysRevLett.67.161
[11] E. Wong and I. Affleck, Tunneling in quantum wires: A Boundary conformal field theory approach, Nucl. Phys. B417 (1994) 403 [cond-mat/9311040] [INSPIRE]. · Zbl 1009.81596
[12] M. Oshikawa and I. Affleck, Boundary conformal field theory approach to the critical two-dimensional Ising model with a defect line, Nucl. Phys. B495 (1997) 533 [cond-mat/9612187] [INSPIRE]. · Zbl 0933.82007
[13] Azeyanagi, T.; Karch, A.; Takayanagi, T.; Thompson, EG, Holographic calculation of boundary entropy, JHEP, 03, 054 (2008) · doi:10.1088/1126-6708/2008/03/054
[14] Quella, T.; Runkel, I.; Watts, GMT, Reflection and transmission for conformal defects, JHEP, 04, 095 (2007) · doi:10.1088/1126-6708/2007/04/095
[15] Billò, M.; Gonçalves, V.; Lauria, E.; Meineri, M., Defects in conformal field theory, JHEP, 04, 091 (2016) · Zbl 1388.81029
[16] Meineri, M.; Penedones, J.; Rousset, A., Colliders and conformal interfaces, JHEP, 02, 138 (2020) · doi:10.1007/JHEP02(2020)138
[17] Belin, A.; Biswas, S.; Sully, J., The spectrum of boundary states in symmetric orbifolds, JHEP, 01, 123 (2022) · Zbl 1521.81286 · doi:10.1007/JHEP01(2022)123
[18] Gaberdiel, MR; Knighton, B.; Vošmera, J., D-branes in AdS_3 × S^3 × 𝕋^4at k = 1 and their holographic duals, JHEP, 12, 149 (2021) · Zbl 1521.81224 · doi:10.1007/JHEP12(2021)149
[19] Haehl, FM; Rangamani, M., Permutation orbifolds and holography, JHEP, 03, 163 (2015) · Zbl 1388.83661 · doi:10.1007/JHEP03(2015)163
[20] A. Belin, C.A. Keller and A. Maloney, String Universality for Permutation Orbifolds, Phys. Rev. D91 (2015) 106005 [arXiv:1412.7159] [INSPIRE]. · Zbl 1357.81150
[21] Avery, SG; Chowdhury, BD; Mathur, SD, Deforming the D1D5 CFT away from the orbifold point, JHEP, 06, 031 (2010) · Zbl 1290.81097 · doi:10.1007/JHEP06(2010)031
[22] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[23] Eberhardt, L.; Gaberdiel, MR; Gopakumar, R., Deriving the AdS_3/CFT_2correspondence, JHEP, 02, 136 (2020) · doi:10.1007/JHEP02(2020)136
[24] Chiodaroli, M.; Gutperle, M.; Krym, D., Half-BPS Solutions locally asymptotic to AdS_3 × S^3and interface conformal field theories, JHEP, 02, 066 (2010) · Zbl 1270.81187 · doi:10.1007/JHEP02(2010)066
[25] Chiodaroli, M.; Gutperle, M.; Hung, L-Y, Boundary entropy of supersymmetric Janus solutions, JHEP, 09, 082 (2010) · Zbl 1291.81348 · doi:10.1007/JHEP09(2010)082
[26] Bak, D.; Gutperle, M.; Hirano, S., Three dimensional Janus and time-dependent black holes, JHEP, 02, 068 (2007) · doi:10.1088/1126-6708/2007/02/068
[27] C. Bachas, S. Chapman, D. Ge and G. Policastro, Energy Reflection and Transmission at 2D Holographic Interfaces, Phys. Rev. Lett.125 (2020) 231602 [arXiv:2006.11333] [INSPIRE].
[28] Baig, SA; Karch, A., Double brane holographic model dual to 2d ICFTs, JHEP, 10, 022 (2022) · Zbl 1534.81132 · doi:10.1007/JHEP10(2022)022
[29] Gubser, SS; Klebanov, IR; Tseytlin, AA, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B, 534, 202 (1998) · Zbl 1078.81563 · doi:10.1016/S0550-3213(98)00514-8
[30] A. Fotopoulos and T.R. Taylor, Comment on two loop free energy in N = 4 supersymmetric Yang-Mills theory at finite temperature, Phys. Rev. D59 (1999) 061701 [hep-th/9811224] [INSPIRE].
[31] G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett.87 (2001) 081601 [hep-th/0104066] [INSPIRE].
[32] Buchel, A.; Liu, JT; Starinets, AO, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B, 707, 56 (2005) · Zbl 1160.81463 · doi:10.1016/j.nuclphysb.2004.11.055
[33] S.C. Huot, S. Jeon and G.D. Moore, Shear viscosity in weakly coupled N = 4 super Yang-Mills theory compared to QCD, Phys. Rev. Lett.98 (2007) 172303 [hep-ph/0608062] [INSPIRE].
[34] Burrington, BA; Jardine, IT; Peet, AW, The OPE of bare twist operators in bosonic S_Norbifold CFTs at large N, JHEP, 08, 202 (2018) · Zbl 1396.81167 · doi:10.1007/JHEP08(2018)202
[35] Apolo, L., Deforming symmetric product orbifolds: a tale of moduli and higher spin currents, JHEP, 08, 159 (2022) · Zbl 1522.81182 · doi:10.1007/JHEP08(2022)159
[36] Lunin, O.; Mathur, SD, Correlation functions for M^N/S_Norbifolds, Commun. Math. Phys., 219, 399 (2001) · Zbl 0980.81045 · doi:10.1007/s002200100431
[37] Burrington, BA; Peet, AW, Fractional conformal descendants and correlators in general 2D S_Norbifold CFTs at large N, JHEP, 02, 091 (2023) · Zbl 1541.81154 · doi:10.1007/JHEP02(2023)091
[38] Burrington, BA; Peet, AW, Larger twists and higher n-point functions with fractional conformal descendants in S_Norbifold CFTs at large N, JHEP, 02, 229 (2023) · Zbl 1541.81155 · doi:10.1007/JHEP02(2023)229
[39] Ishibashi, N., The Boundary and Crosscap States in Conformal Field Theories, Mod. Phys. Lett. A, 4, 251 (1989) · doi:10.1142/S0217732389000320
[40] R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory: with applications to String theory, Springer Berlin Heidelberg (2009), p. 205-256 [doi:10.1007/978-3-642-00450-6] [INSPIRE]. · Zbl 1175.81001
[41] Recknagel, A., Permutation branes, JHEP, 04, 041 (2003) · Zbl 1033.81516 · doi:10.1088/1126-6708/2003/04/041
[42] T. Onogi and N. Ishibashi, Conformal Field Theories on Surfaces With Boundaries and Crosscaps, Mod. Phys. Lett. A4 (1989) 161 [Erratum ibid.4 (1989) 885] [INSPIRE].
[43] Billò, M.; Craps, B.; Roose, F., Orbifold boundary states from Cardy’s condition, JHEP, 01, 038 (2001) · doi:10.1088/1126-6708/2001/01/038
[44] Kimura, T.; Murata, M., Current Reflection and Transmission at Conformal Defects: Applying BCFT to Transport Process, Nucl. Phys. B, 885, 266 (2014) · Zbl 1323.81086 · doi:10.1016/j.nuclphysb.2014.05.026
[45] Kimura, T.; Murata, M., Transport Process in Multi-Junctions of Quantum Systems, JHEP, 07, 072 (2015) · Zbl 1388.81677 · doi:10.1007/JHEP07(2015)072
[46] Biswas, S.; Kastikainen, J.; Shashi, S.; Sully, J., Holographic BCFT spectra from brane mergers, JHEP, 11, 158 (2022) · Zbl 1536.81175 · doi:10.1007/JHEP11(2022)158
[47] O. Lunin and S.D. Mathur, Three point functions for M^N/S^Norbifolds with \(\mathcal{N} = 4\) supersymmetry, Commun. Math. Phys.227 (2002) 385 [hep-th/0103169] [INSPIRE]. · Zbl 1004.81029
[48] Bachas, C.; Chen, Z.; Papadopoulos, V., Steady states of holographic interfaces, JHEP, 11, 095 (2021) · Zbl 1521.83084 · doi:10.1007/JHEP11(2021)095
[49] Anous, T.; Meineri, M.; Pelliconi, P.; Sonner, J., Sailing past the End of the World and discovering the Island, SciPost Phys., 13, 075 (2022) · doi:10.21468/SciPostPhys.13.3.075
[50] Horowitz, GT; Maldacena, JM; Strominger, A., Nonextremal black hole microstates and U duality, Phys. Lett. B, 383, 151 (1996) · doi:10.1016/0370-2693(96)00738-1
[51] Seiberg, N.; Witten, E., The D1/D5 system and singular CFT, JHEP, 04, 017 (1999) · Zbl 0953.81076 · doi:10.1088/1126-6708/1999/04/017
[52] David, JR; Mandal, G.; Wadia, SR, Microscopic formulation of black holes in string theory, Phys. Rept., 369, 549 (2002) · Zbl 0998.83032 · doi:10.1016/S0370-1573(02)00271-5
[53] Skenderis, K.; Solodukhin, SN, Quantum effective action from the AdS/CF T correspondence, Phys. Lett. B, 472, 316 (2000) · Zbl 0959.81102 · doi:10.1016/S0370-2693(99)01467-7
[54] Skenderis, K., Asymptotically Anti-de Sitter space-times and their stress energy tensor, Int. J. Mod. Phys. A, 16, 740 (2001) · Zbl 0982.83007 · doi:10.1142/S0217751X0100386X
[55] Papadimitriou, I.; Skenderis, K., Correlation functions in holographic RG flows, JHEP, 10, 075 (2004) · doi:10.1088/1126-6708/2004/10/075
[56] Estes, J., On Holographic Defect Entropy, JHEP, 05, 084 (2014) · doi:10.1007/JHEP05(2014)084
[57] M. Gutperle and A. Trivella, Note on entanglement entropy and regularization in holographic interface theories, Phys. Rev. D95 (2017) 066009 [arXiv:1611.07595] [INSPIRE].
[58] Randall, L.; Sundrum, R., An Alternative to compactification, Phys. Rev. Lett., 83, 4690 (1999) · Zbl 0946.81074 · doi:10.1103/PhysRevLett.83.4690
[59] Karch, A.; Randall, L., Locally localized gravity, JHEP, 05, 008 (2001) · Zbl 1047.81062 · doi:10.1088/1126-6708/2001/05/008
[60] Bachas, C.; de Boer, J.; Dijkgraaf, R.; Ooguri, H., Permeable conformal walls and holography, JHEP, 06, 027 (2002) · doi:10.1088/1126-6708/2002/06/027
[61] Bak, D.; Gutperle, M.; Hirano, S., A Dilatonic deformation of AdS_5and its field theory dual, JHEP, 05, 072 (2003) · doi:10.1088/1126-6708/2003/05/072
[62] Clark, A.; Karch, A., Super Janus, JHEP, 10, 094 (2005) · doi:10.1088/1126-6708/2005/10/094
[63] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.96 (2006) 181602 [hep-th/0603001] [INSPIRE]. · Zbl 1228.83110
[64] A. Belin et al., \( \mathcal{N} = 2\) Minimal Models: A Holographic Needle in a Symmetric Orbifold Haystack, SciPost Phys.8 (2020) 084 [arXiv:2002.07819] [INSPIRE].
[65] Benjamin, N.; Bintanja, S.; Castro, A.; Hollander, J., The stranger things of symmetric product orbifold CFTs, JHEP, 11, 054 (2022) · Zbl 1536.81171 · doi:10.1007/JHEP11(2022)054
[66] Belin, A.; Castro, A.; Keller, CA; Mühlmann, B., The Holographic Landscape of Symmetric Product Orbifolds, JHEP, 01, 111 (2020) · Zbl 1434.83122 · doi:10.1007/JHEP01(2020)111
[67] Gaberdiel, MR; Peng, C.; Zadeh, IG, Higgsing the stringy higher spin symmetry, JHEP, 10, 101 (2015) · Zbl 1388.81814 · doi:10.1007/JHEP10(2015)101
[68] Chapman, S.; Ge, D.; Policastro, G., Holographic Complexity for Defects Distinguishes Action from Volume, JHEP, 05, 049 (2019) · Zbl 1416.83098 · doi:10.1007/JHEP05(2019)049
[69] Auzzi, R., Volume complexity for Janus AdS_3geometries, JHEP, 08, 045 (2021) · Zbl 1469.81055 · doi:10.1007/JHEP08(2021)045
[70] Auzzi, R.; Baiguera, S.; Bonansea, S.; Nardelli, G., Action complexity in the presence of defects and boundaries, JHEP, 02, 118 (2022) · Zbl 1522.81422 · doi:10.1007/JHEP02(2022)118
[71] Karch, A.; Luo, Z-X; Sun, H-Y, Universal relations for holographic interfaces, JHEP, 09, 172 (2021) · Zbl 1472.83084 · doi:10.1007/JHEP09(2021)172
[72] Karch, A.; Wang, M., Universal behavior of entanglement entropies in interface CFTs from general holographic spacetimes, JHEP, 06, 145 (2023) · Zbl 07716851 · doi:10.1007/JHEP06(2023)145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.