×

Fractional conformal descendants and correlators in general 2D \(S_N\) orbifold CFTs at large \(N\). (English) Zbl 1541.81154

Summary: We consider correlation functions in symmetric product (\(S_N\)) orbifold CFTs at large \(N\) with arbitrary seed CFT. Specifically, we consider correlators of descendant operators constructed using both the full Virasoro generators \(L_m\) and fractional Virasoro generators \(\ell_{m/n_i}\). Using covering space techniques, we show that correlators of descendants may be written entirely in terms of correlators of ancestors, and further that the appropriate set of ancestors are those operators that lift to conformal primaries on the cover. We argue that the covering space data should cancel out in such calculations. To back this claim, we provide some example calculations by considering a three-point function of the form (4-cycle)-(2-cycle)-(5-cycle) that lifts to a three-point function of arbitrary primaries on the cover, and descendants thereof. In these examples we show that while the covering space is used for the calculation, the final descent relations do not depend on covering space data, nor on the details of which seed CFT is used to construct the orbifold, making these results universal.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

References:

[1] Maldacena, JM, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[2] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[3] Heemskerk, I.; Penedones, J.; Polchinski, J.; Sully, J., Holography from conformal field theory, JHEP, 10, 079 (2009) · doi:10.1088/1126-6708/2009/10/079
[4] Strominger, A.; Vafa, C., Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B, 379, 99 (1996) · Zbl 1376.83026 · doi:10.1016/0370-2693(96)00345-0
[5] Giveon, A.; Kutasov, D.; Seiberg, N., Comments on string theory on AdS_3, Adv. Theor. Math. Phys., 2, 733 (1998) · Zbl 1041.81575 · doi:10.4310/ATMP.1998.v2.n4.a3
[6] David, JR; Mandal, G.; Wadia, SR, Microscopic formulation of black holes in string theory, Phys. Rept., 369, 549 (2002) · Zbl 0998.83032 · doi:10.1016/S0370-1573(02)00271-5
[7] Dijkgraaf, R., Instanton strings and hyperKähler geometry, Nucl. Phys. B, 543, 545 (1999) · Zbl 1097.58503 · doi:10.1016/S0550-3213(98)00869-4
[8] de Boer, J., Six-dimensional supergravity on S^3×AdS_3and 2D conformal field theory, Nucl. Phys. B, 548, 139 (1999) · Zbl 0944.83032 · doi:10.1016/S0550-3213(99)00160-1
[9] Seiberg, N.; Witten, E., The D1/D5 system and singular CFT, JHEP, 04, 017 (1999) · Zbl 0953.81076 · doi:10.1088/1126-6708/1999/04/017
[10] Larsen, F.; Martinec, EJ, U(1) charges and moduli in the D1-D5 system, JHEP, 06, 019 (1999) · Zbl 0961.81073 · doi:10.1088/1126-6708/1999/06/019
[11] Dijkgraaf, R.; Vafa, C.; Verlinde, EP; Verlinde, HL, The operator algebra of orbifold models, Commun. Math. Phys., 123, 485 (1989) · Zbl 0674.46051 · doi:10.1007/BF01238812
[12] Haehl, FM; Rangamani, M., Permutation orbifolds and holography, JHEP, 03, 163 (2015) · Zbl 1388.83661 · doi:10.1007/JHEP03(2015)163
[13] A. Belin, C.A. Keller and A. Maloney, String universality for permutation orbifolds, Phys. Rev. D91 (2015) 106005 [arXiv:1412.7159] [INSPIRE]. · Zbl 1357.81150
[14] A. Belin, C.A. Keller and A. Maloney, Permutation orbifolds in the large N limit, arXiv:1509.01256 [INSPIRE]. · Zbl 1357.81150
[15] Belin, A.; de Boer, J.; Kruthoff, J.; Michel, B.; Shaghoulian, E.; Shyani, M., Universality of sparse d > 2 conformal field theory at large N, JHEP, 03, 067 (2017) · Zbl 1377.81154 · doi:10.1007/JHEP03(2017)067
[16] Belin, A., Permutation orbifolds and chaos, JHEP, 11, 131 (2017) · Zbl 1383.81181 · doi:10.1007/JHEP11(2017)131
[17] Dijkgraaf, R.; Moore, GW; Verlinde, EP; Verlinde, HL, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys., 185, 197 (1997) · Zbl 0872.32006 · doi:10.1007/s002200050087
[18] Lunin, O.; Mathur, SD, Correlation functions for M^N/S_Norbifolds, Commun. Math. Phys., 219, 399 (2001) · Zbl 0980.81045 · doi:10.1007/s002200100431
[19] Lunin, O.; Mathur, SD, Three point functions for M^N/S_Norbifolds with N = 4 supersymmetry, Commun. Math. Phys., 227, 385 (2002) · Zbl 1004.81029 · doi:10.1007/s002200200638
[20] A. Pakman, L. Rastelli and S.S. Razamat, Extremal correlators and Hurwitz numbers in symmetric product orbifolds, Phys. Rev. D80 (2009) 086009 [arXiv:0905.3451] [INSPIRE].
[21] Pakman, A.; Rastelli, L.; Razamat, SS, Diagrams for symmetric product orbifolds, JHEP, 10, 034 (2009) · doi:10.1088/1126-6708/2009/10/034
[22] Pakman, A.; Rastelli, L.; Razamat, SS, A spin chain for the symmetric product CFT_2, JHEP, 05, 099 (2010) · Zbl 1287.81074 · doi:10.1007/JHEP05(2010)099
[23] Keller, CA, Phase transitions in symmetric orbifold CFTs and universality, JHEP, 03, 114 (2011) · Zbl 1301.81223 · doi:10.1007/JHEP03(2011)114
[24] Benjamin, N.; Bintanja, S.; Castro, A.; Hollander, J., The stranger things of symmetric product orbifold CFTs, JHEP, 11, 054 (2022) · Zbl 1536.81171 · doi:10.1007/JHEP11(2022)054
[25] Guo, B.; Hughes, MRR; Mathur, SD; Mehta, M., Universal lifting in the D1-D5 CFT, JHEP, 10, 148 (2022) · Zbl 1534.81141 · doi:10.1007/JHEP10(2022)148
[26] B. Guo and S.D. Hampton, Bootstrapping the effect of the twist operator in symmetric orbifold CFTs, arXiv:2206.01623 [INSPIRE].
[27] Alves Lima, A.; Sotkov, GM; Stanishkov, M., Four-point functions with multi-cycle fields in symmetric orbifolds and the D1-D5 CFT, JHEP, 05, 106 (2022) · Zbl 1522.81515 · doi:10.1007/JHEP05(2022)106
[28] Lima, AA; Sotkov, GM; Stanishkov, M., On the dynamics of protected Ramond ground states in the D1-D5 CFT, JHEP, 07, 120 (2021) · doi:10.1007/JHEP07(2021)120
[29] A.A. Lima, G.M. Sotkov and M. Stanishkov, Microstate renormalization in deformed D1-D5 SCFT, Phys. Lett. B808 (2020) 135630 [arXiv:2005.06702] [INSPIRE]. · Zbl 1473.81165
[30] Lima, AA; Sotkov, GM; Stanishkov, M., Dynamics of R-neutral Ramond fields in the D1-D5 SCFT, JHEP, 07, 211 (2021) · doi:10.1007/JHEP07(2021)211
[31] C.A. Keller and I.G. Zadeh, Lifting \(\frac{1}{4} \)-BPS states on K3 and Mathieu moonshine, Commun. Math. Phys.377 (2020) 225 [arXiv:1905.00035] [INSPIRE]. · Zbl 1441.83021
[32] J. Garcia i Tormo and M. Taylor, Correlation functions in the D1-D5 orbifold CFT, JHEP06 (2018) 012 [arXiv:1804.10205] [INSPIRE]. · Zbl 1395.81249
[33] Hampton, S.; Mathur, SD; Zadeh, IG, Lifting of D1-D5-P states, JHEP, 01, 075 (2019) · Zbl 1409.81122 · doi:10.1007/JHEP01(2019)075
[34] Burrington, BA; Jardine, IT; Peet, AW, Operator mixing in deformed D1-D5 CFT and the OPE on the cover, JHEP, 06, 149 (2017) · Zbl 1380.83277 · doi:10.1007/JHEP06(2017)149
[35] Carson, Z.; Hampton, S.; Mathur, SD, Full action of two deformation operators in the D1-D5 CFT, JHEP, 11, 096 (2017) · Zbl 1383.83048 · doi:10.1007/JHEP11(2017)096
[36] Gaberdiel, MR; Peng, C.; Zadeh, IG, Higgsing the stringy higher spin symmetry, JHEP, 10, 101 (2015) · Zbl 1388.81814 · doi:10.1007/JHEP10(2015)101
[37] Carson, Z.; Mathur, SD; Turton, D., Bogoliubov coefficients for the twist operator in the D1-D5 CFT, Nucl. Phys. B, 889, 443 (2014) · Zbl 1326.81173 · doi:10.1016/j.nuclphysb.2014.10.018
[38] Carson, Z.; Hampton, S.; Mathur, SD; Turton, D., Effect of the deformation operator in the D1-D5 CFT, JHEP, 01, 071 (2015) · doi:10.1007/JHEP01(2015)071
[39] Carson, Z.; Hampton, S.; Mathur, SD; Turton, D., Effect of the twist operator in the D1-D5 CFT, JHEP, 08, 064 (2014) · doi:10.1007/JHEP08(2014)064
[40] B.A. Burrington, S.D. Mathur, A.W. Peet and I.G. Zadeh, Analyzing the squeezed state generated by a twist deformation, Phys. Rev. D91 (2015) 124072 [arXiv:1410.5790] [INSPIRE].
[41] B.A. Burrington, A.W. Peet and I.G. Zadeh, Operator mixing for string states in the D1-D5 CFT near the orbifold point, Phys. Rev. D87 (2013) 106001 [arXiv:1211.6699] [INSPIRE].
[42] Avery, SG; Chowdhury, BD, Intertwining relations for the deformed D1-D5 CFT, JHEP, 05, 025 (2011) · Zbl 1296.81079 · doi:10.1007/JHEP05(2011)025
[43] Avery, SG; Chowdhury, BD; Mathur, SD, Deforming the D1-D5 CFT away from the orbifold point, JHEP, 06, 031 (2010) · Zbl 1290.81097 · doi:10.1007/JHEP06(2010)031
[44] Avery, SG; Chowdhury, BD; Mathur, SD, Excitations in the deformed D1-D5 CFT, JHEP, 06, 032 (2010) · Zbl 1290.81096 · doi:10.1007/JHEP06(2010)032
[45] David, JR; Mandal, G.; Wadia, SR, D1/D5 moduli in SCFT and gauge theory, and Hawking radiation, Nucl. Phys. B, 564, 103 (2000) · Zbl 1028.81523 · doi:10.1016/S0550-3213(99)00620-3
[46] Burrington, BA; Jardine, IT; Peet, AW, The OPE of bare twist operators in bosonic S_Norbifold CFTs at large N, JHEP, 08, 202 (2018) · Zbl 1396.81167 · doi:10.1007/JHEP08(2018)202
[47] De Beer, T.; Burrington, BA; Jardine, IT; Peet, AW, The large N limit of OPEs in symmetric orbifold CFTs with N = (4, 4) supersymmetry, JHEP, 08, 015 (2019) · Zbl 1421.81112 · doi:10.1007/s13130-019-11019-2
[48] Dei, A.; Eberhardt, L., Correlators of the symmetric product orbifold, JHEP, 01, 108 (2020) · Zbl 1434.81098 · doi:10.1007/JHEP01(2020)108
[49] Roumpedakis, K., Comments on the S_Norbifold CFT in the large N-limit, JHEP, 07, 038 (2018) · Zbl 1395.81245 · doi:10.1007/JHEP07(2018)038
[50] B.A. Burrington, A.W. Peet and I.G. Zadeh, Twist-nontwist correlators in M^N/S_Norbifold CFTs, Phys. Rev. D87 (2013) 106008 [arXiv:1211.6689] [INSPIRE].
[51] P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Springer-Verlag, New York, NY, U.S.A. (1997) [INSPIRE]. · Zbl 0869.53052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.