×

Illuminating entanglement shadows of BTZ black holes by a generalized entanglement measure. (English) Zbl 1476.83085

Summary: We define a generalized entanglement measure in the context of the AdS/CFT correspondence. Compared to the ordinary entanglement entropy for a spatial subregion dual to the area of the Ryu-Takayanagi surface, we take into account both entanglement between spatial degrees of freedom as well as between different fields of the boundary theory. Moreover, we resolve the contribution to the entanglement entropy of strings with different winding numbers in the bulk geometry. We then calculate this generalized entanglement measure in a thermal state dual to the BTZ black hole in the setting of the D1/D5 system at and close to the orbifold point. We find that the entanglement entropy defined in this way is dual to the length of a geodesic with non-zero winding number. Such geodesics probe the entire bulk geometry, including the entanglement shadow up to the horizon in the one-sided black hole as well as the wormhole growth in the case of a two-sided black hole for an arbitrarily long time. Therefore, we propose that the entanglement structure of the boundary state is enough to reconstruct asymptotically \( \mathrm{AdS}_3\) geometries up to extremal surface barriers.

MSC:

83C57 Black holes
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81P42 Entanglement measures, concurrencies, separability criteria

References:

[1] Ryu, S.; Takayanagi, T., Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett., 96, 181602 (2006) · Zbl 1228.83110 · doi:10.1103/PhysRevLett.96.181602
[2] B. Swingle, Entanglement Renormalization and Holography, Phys. Rev. D86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
[3] Van Raamsdonk, M., Building up spacetime with quantum entanglement, Gen. Rel. Grav., 42, 2323 (2010) · Zbl 1200.83052 · doi:10.1007/s10714-010-1034-0
[4] Bianchi, E.; Myers, RC, On the Architecture of Spacetime Geometry, Class. Quant. Grav., 31, 214002 (2014) · Zbl 1303.83010 · doi:10.1088/0264-9381/31/21/214002
[5] Hubeny, VE; Maxfield, H.; Rangamani, M.; Tonni, E., Holographic entanglement plateaux, JHEP, 08, 092 (2013) · doi:10.1007/JHEP08(2013)092
[6] Balasubramanian, V.; Chowdhury, BD; Czech, B.; de Boer, J., Entwinement and the emergence of spacetime, JHEP, 01, 048 (2015) · Zbl 1388.83633 · doi:10.1007/JHEP01(2015)048
[7] B. Freivogel, R. Jefferson, L. Kabir, B. Mosk and I.-S. Yang, Casting Shadows on Holographic Reconstruction, Phys. Rev. D91 (2015) 086013 [arXiv:1412.5175] [INSPIRE].
[8] Hartman, T.; Maldacena, J., Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP, 05, 014 (2013) · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[9] Susskind, L., Entanglement is not enough, Fortsch. Phys., 64, 49 (2016) · Zbl 1429.81021 · doi:10.1002/prop.201500095
[10] L. Susskind, Computational Complexity and Black Hole Horizons, Fortsch. Phys.64 (2016) 24 [Addendum ibid.64 (2016) 44] [arXiv:1403.5695] [INSPIRE]. · Zbl 1429.81019
[11] Stanford, D.; Susskind, L., Complexity and Shock Wave Geometries, Phys. Rev. D, 90, 126007 (2014) · doi:10.1103/PhysRevD.90.126007
[12] Balasubramanian, V.; Bernamonti, A.; Craps, B.; De Jonckheere, T.; Galli, F., Entwinement in discretely gauged theories, JHEP, 12, 094 (2016) · Zbl 1390.83084 · doi:10.1007/JHEP12(2016)094
[13] Balasubramanian, V.; Craps, B.; De Jonckheere, T.; Sárosi, G., Entanglement versus entwinement in symmetric product orbifolds, JHEP, 01, 190 (2019) · Zbl 1409.81012 · doi:10.1007/JHEP01(2019)190
[14] Erdmenger, J.; Gerbershagen, M., Entwinement as a possible alternative to complexity, JHEP, 03, 082 (2020) · Zbl 1435.83147 · doi:10.1007/JHEP03(2020)082
[15] David, JR; Mandal, G.; Wadia, SR, Microscopic formulation of black holes in string theory, Phys. Rept., 369, 549 (2002) · Zbl 0998.83032 · doi:10.1016/S0370-1573(02)00271-5
[16] Hartman, T.; Keller, CA; Stoica, B., Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP, 09, 118 (2014) · Zbl 1333.81368 · doi:10.1007/JHEP09(2014)118
[17] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.0406 (2004) P06002 [hep-th/0405152] [INSPIRE]. · Zbl 1082.82002
[18] Gerbershagen, M., Monodromy methods for torus conformal blocks and entanglement entropy at large central charge, JHEP, 08, 143 (2021) · Zbl 1469.81005 · doi:10.1007/JHEP08(2021)143
[19] T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
[20] Giribet, G.; Hull, C.; Kleban, M.; Porrati, M.; Rabinovici, E., Superstrings on AdS_3at ‖ = 1, JHEP, 08, 204 (2018) · Zbl 1396.83049 · doi:10.1007/JHEP08(2018)204
[21] Gaberdiel, MR; Gopakumar, R., Tensionless string spectra on AdS_3, JHEP, 05, 085 (2018) · Zbl 1391.81160 · doi:10.1007/JHEP05(2018)085
[22] Eberhardt, L.; Gaberdiel, MR; Gopakumar, R., The Worldsheet Dual of the Symmetric Product CFT, JHEP, 04, 103 (2019) · Zbl 1415.83055 · doi:10.1007/JHEP04(2019)103
[23] Eberhardt, L.; Gaberdiel, MR; Gopakumar, R., Deriving the AdS_3/CFT_2correspondence, JHEP, 02, 136 (2020) · doi:10.1007/JHEP02(2020)136
[24] Dei, A.; Gaberdiel, MR; Gopakumar, R.; Knighton, B., Free field world-sheet correlators for AdS_3, JHEP, 02, 081 (2021) · Zbl 1460.83091 · doi:10.1007/JHEP02(2021)081
[25] Eberhardt, L., Partition functions of the tensionless string, JHEP, 03, 176 (2021) · Zbl 1461.83079 · doi:10.1007/JHEP03(2021)176
[26] Avery, SG; Chowdhury, BD; Mathur, SD, Deforming the D1D5 CFT away from the orbifold point, JHEP, 06, 031 (2010) · Zbl 1290.81097 · doi:10.1007/JHEP06(2010)031
[27] Avery, SG; Chowdhury, BD; Mathur, SD, Excitations in the deformed D1D5 CFT, JHEP, 06, 032 (2010) · Zbl 1290.81096 · doi:10.1007/JHEP06(2010)032
[28] Pakman, A.; Rastelli, L.; Razamat, SS, A Spin Chain for the Symmetric Product CFT_2, JHEP, 05, 099 (2010) · Zbl 1287.81074 · doi:10.1007/JHEP05(2010)099
[29] Asplund, CT; Avery, SG, Evolution of Entanglement Entropy in the D1-D5 Brane System, Phys. Rev. D, 84, 124053 (2011) · doi:10.1103/PhysRevD.84.124053
[30] Burrington, BA; Peet, AW; Zadeh, IG, Operator mixing for string states in the D1-D5 CFT near the orbifold point, Phys. Rev. D, 87, 106001 (2013) · doi:10.1103/PhysRevD.87.106001
[31] Carson, Z.; Hampton, S.; Mathur, SD; Turton, D., Effect of the deformation operator in the D1D5 CFT, JHEP, 01, 071 (2015) · doi:10.1007/JHEP01(2015)071
[32] Carson, Z.; Hampton, S.; Mathur, SD; Turton, D., Effect of the twist operator in the D1D5 CFT, JHEP, 08, 064 (2014) · Zbl 1326.81173 · doi:10.1007/JHEP08(2014)064
[33] Carson, Z.; Mathur, SD; Turton, D., Bogoliubov coefficients for the twist operator in the D1D5 CFT, Nucl. Phys. B, 889, 443 (2014) · Zbl 1326.81173 · doi:10.1016/j.nuclphysb.2014.10.018
[34] Carson, Z.; Hampton, S.; Mathur, SD, Second order effect of twist deformations in the D1D5 CFT, JHEP, 04, 115 (2016) · Zbl 1388.83644
[35] Gaberdiel, MR; Peng, C.; Zadeh, IG, Higgsing the stringy higher spin symmetry, JHEP, 10, 101 (2015) · Zbl 1388.81814 · doi:10.1007/JHEP10(2015)101
[36] Carson, Z.; Hampton, S.; Mathur, SD, One-Loop Transition Amplitudes in the D1D5 CFT, JHEP, 01, 006 (2017) · Zbl 1373.81317 · doi:10.1007/JHEP01(2017)006
[37] Carson, Z.; Hampton, S.; Mathur, SD, Full action of two deformation operators in the D1D5 CFT, JHEP, 11, 096 (2017) · Zbl 1383.83048 · doi:10.1007/JHEP11(2017)096
[38] Burrington, BA; Jardine, IT; Peet, AW, Operator mixing in deformed D1D5 CFT and the OPE on the cover, JHEP, 06, 149 (2017) · Zbl 1380.83277 · doi:10.1007/JHEP06(2017)149
[39] Hampton, S.; Mathur, SD; Zadeh, IG, Lifting of D1-D5-P states, JHEP, 01, 075 (2019) · Zbl 1409.81122 · doi:10.1007/JHEP01(2019)075
[40] Guo, B.; Mathur, SD, Lifting of states in 2-dimensional N = 4 supersymmetric CFTs, JHEP, 10, 155 (2019) · Zbl 1427.81131 · doi:10.1007/JHEP10(2019)155
[41] Guo, B.; Mathur, SD, Lifting of level-1 states in the D1D5 CFT, JHEP, 03, 028 (2020) · Zbl 1435.81183 · doi:10.1007/JHEP03(2020)028
[42] Guo, B.; Mathur, SD, Lifting at higher levels in the D1D5 CFT, JHEP, 11, 145 (2020) · doi:10.1007/JHEP11(2020)145
[43] A.A. Lima, G.M. Sotkov and M. Stanishkov, On the Dynamics of Protected Ramond Ground States in the D1-D5 CFT, arXiv:2103.04459 [INSPIRE].
[44] Czech, B.; Dong, X.; Sully, J., Holographic Reconstruction of General Bulk Surfaces, JHEP, 11, 015 (2014) · Zbl 1333.83070 · doi:10.1007/JHEP11(2014)015
[45] Czech, B.; Lamprou, L., Holographic definition of points and distances, Phys. Rev. D, 90, 106005 (2014) · doi:10.1103/PhysRevD.90.106005
[46] Czech, B.; Lamprou, L.; McCandlish, S.; Sully, J., Integral Geometry and Holography, JHEP, 10, 175 (2015) · Zbl 1388.83217 · doi:10.1007/JHEP10(2015)175
[47] Asplund, CT; Callebaut, N.; Zukowski, C., Equivalence of Emergent de Sitter Spaces from Conformal Field Theory, JHEP, 09, 154 (2016) · Zbl 1390.83079 · doi:10.1007/JHEP09(2016)154
[48] Zhang, J-d; Chen, B., Kinematic Space and Wormholes, JHEP, 01, 092 (2017) · Zbl 1373.83073 · doi:10.1007/JHEP01(2017)092
[49] Cresswell, JC; Peet, AW, Kinematic space for conical defects, JHEP, 11, 155 (2017) · Zbl 1383.81198 · doi:10.1007/JHEP11(2017)155
[50] Abt, R.; Erdmenger, J.; Gerbershagen, M.; Melby-Thompson, CM; Northe, C., Holographic Subregion Complexity from Kinematic Space, JHEP, 01, 012 (2019) · Zbl 1409.83083 · doi:10.1007/JHEP01(2019)012
[51] Freedman, M.; Headrick, M., Bit threads and holographic entanglement, Commun. Math. Phys., 352, 407 (2017) · Zbl 1425.81014 · doi:10.1007/s00220-016-2796-3
[52] Headrick, M.; Hubeny, VE, Riemannian and Lorentzian flow-cut theorems, Class. Quant. Grav., 35, 10 (2018) · Zbl 1391.83016 · doi:10.1088/1361-6382/aab83c
[53] Cui, SX; Hayden, P.; He, T.; Headrick, M.; Stoica, B.; Walter, M., Bit Threads and Holographic Monogamy, Commun. Math. Phys., 376, 609 (2019) · Zbl 1476.81012 · doi:10.1007/s00220-019-03510-8
[54] Agón, CA; Cáceres, E.; Pedraza, JF, Bit threads, Einstein’s equations and bulk locality, JHEP, 01, 193 (2021) · Zbl 1459.83003 · doi:10.1007/JHEP01(2021)193
[55] Engelhardt, N.; Wall, AC, Extremal Surface Barriers, JHEP, 03, 068 (2014) · Zbl 1333.83139 · doi:10.1007/JHEP03(2014)068
[56] Goldstein, M.; Sela, E., Symmetry-resolved entanglement in many-body systems, Phys. Rev. Lett., 120, 200602 (2018) · doi:10.1103/PhysRevLett.120.200602
[57] J.C. Xavier, F.C. Alcaraz and G. Sierra, Equipartition of the entanglement entropy, Phys. Rev. B98 (2018) 041106 [arXiv:1804.06357] [INSPIRE].
[58] Bonsignori, R.; Ruggiero, P.; Calabrese, P., Symmetry resolved entanglement in free fermionic systems, J. Phys. A, 52, 475302 (2019) · Zbl 1509.81063 · doi:10.1088/1751-8121/ab4b77
[59] H. Barghathi, E. Casiano-Diaz and A. Del Maestro, Operationally accessible entanglement of one-dimensional spinless fermions, Phys. Rev. A100 (2019) 022324 [arXiv:1905.03312] [INSPIRE]. · Zbl 1457.82013
[60] Feldman, N.; Goldstein, M., Dynamics of Charge-Resolved Entanglement after a Local Quench, Phys. Rev. B, 100, 235146 (2019) · doi:10.1103/PhysRevB.100.235146
[61] S. Fraenkel and M. Goldstein, Symmetry resolved entanglement: Exact results in 1D and beyond, J. Stat. Mech.2003 (2020) 033106 [arXiv:1910.08459] [INSPIRE]. · Zbl 1456.81064
[62] Tan, MT; Ryu, S., Particle number fluctuations, Rényi entropy, and symmetry-resolved entanglement entropy in a two-dimensional Fermi gas from multidimensional bosonization, Phys. Rev. B, 101, 235169 (2020) · doi:10.1103/PhysRevB.101.235169
[63] S. Murciano, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement in two-dimensional systems via dimensional reduction, J. Stat. Mech.2008 (2020) 083102 [arXiv:2003.11453] [INSPIRE]. · Zbl 1459.81138
[64] L. Capizzi, P. Ruggiero and P. Calabrese, Symmetry resolved entanglement entropy of excited states in a CFT, J. Stat. Mech.2007 (2020) 073101 [arXiv:2003.04670] [INSPIRE]. · Zbl 1459.81097
[65] X. Turkeshi, P. Ruggiero, V. Alba and P. Calabrese, Entanglement equipartition in critical random spin chains, Phys. Rev. B102 (2020) 014455 [arXiv:2005.03331] [INSPIRE].
[66] Murciano, S.; Di Giulio, G.; Calabrese, P., Entanglement and symmetry resolution in two dimensional free quantum field theories, JHEP, 08, 073 (2020) · Zbl 1454.81137 · doi:10.1007/JHEP08(2020)073
[67] Horváth, DX; Calabrese, P., Symmetry resolved entanglement in integrable field theories via form factor bootstrap, JHEP, 11, 131 (2020) · Zbl 1456.81237 · doi:10.1007/JHEP11(2020)131
[68] Azses, D.; Sela, E., Symmetry-resolved entanglement in symmetry-protected topological phases, Phys. Rev. B, 102, 235157 (2020) · doi:10.1103/PhysRevB.102.235157
[69] Zhao, S.; Northe, C.; Meyer, R., Symmetry-resolved entanglement in AdS_3/CFT_2coupled to U(1) Chern-Simons theory, JHEP, 07, 030 (2021) · Zbl 1468.81089 · doi:10.1007/JHEP07(2021)030
[70] Horváth, DX; Capizzi, L.; Calabrese, P., U(1) symmetry resolved entanglement in free 1 + 1 dimensional field theories via form factor bootstrap, JHEP, 05, 197 (2021) · Zbl 1466.81050 · doi:10.1007/JHEP05(2021)197
[71] T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].
[72] Lewkowycz, A.; Maldacena, J., Generalized gravitational entropy, JHEP, 08, 090 (2013) · Zbl 1342.83185 · doi:10.1007/JHEP08(2013)090
[73] Dijkgraaf, R.; Moore, GW; Verlinde, EP; Verlinde, HL, Elliptic genera of symmetric products and second quantized strings, Commun. Math. Phys., 185, 197 (1997) · Zbl 0872.32006 · doi:10.1007/s002200050087
[74] R. Dijkgraaf, Fields, strings, matrices and symmetric products, hep-th/9912104 [INSPIRE]. · Zbl 0971.81147
[75] Bantay, P., Symmetric products, permutation orbifolds and discrete torsion, Lett. Math. Phys., 63, 209 (2003) · Zbl 1025.81042 · doi:10.1023/A:1024453119772
[76] Keller, CA, Phase transitions in symmetric orbifold CFTs and universality, JHEP, 03, 114 (2011) · Zbl 1301.81223 · doi:10.1007/JHEP03(2011)114
[77] de Boer, J., Large N elliptic genus and AdS/CFT correspondence, JHEP, 05, 017 (1999) · Zbl 1017.81041 · doi:10.1088/1126-6708/1999/05/017
[78] Balian, R., Gain of information in a quantum measurement, Eur. J. Phys., 10, 208 (1989) · doi:10.1088/0143-0807/10/3/010
[79] H.M. Wiseman and J.A. Vaccaro, Entanglement of Indistinguishable Particles Shared between Two Parties, Phys. Rev. Lett.91 (2003) 097902 [quant-ph/0210002].
[80] I. Klich and L.S. Levitov, Scaling of entanglement entropy and superselection rules, arXiv e-prints (2008) [arXiv:0812.0006]. · Zbl 1180.81019
[81] Lukin, A., Probing entanglement in a many-body-localized system, Science, 364, 256 (2019) · doi:10.1126/science.aau0818
[82] A. Belin, C.A. Keller and A. Maloney, Permutation Orbifolds in the large N Limit, arXiv:1509.01256 [INSPIRE]. · Zbl 1357.81150
[83] Belin, A.; Keller, CA; Zadeh, IG, Genus two partition functions and Rényi entropies of large c conformal field theories, J. Phys. A, 50, 435401 (2017) · Zbl 1377.81153 · doi:10.1088/1751-8121/aa8a11
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.