×

Extremal surface barriers. (English) Zbl 1333.83139

Summary: We present a generic condition for Lorentzian manifolds to have a barrier that limits the reach of boundary-anchored extremal surfaces of arbitrary dimension. We show that any surface with nonpositive extrinsic curvature is a barrier, in the sense that extremal surfaces cannot be continuously deformed past it. Furthermore, the outermost barrier surface has nonnegative extrinsic curvature. Under certain conditions, we show that the existence of trapped surfaces implies a barrier, and conversely. In the context of AdS/CFT, these barriers imply that it is impossible to reconstruct the entire bulk using extremal surfaces. We comment on the implications for the firewall controversy.

MSC:

83C75 Space-time singularities, cosmic censorship, etc.
53Z05 Applications of differential geometry to physics

References:

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.2 (1998) 231 [Int. J. Theor. Phys.38 (1999) 1113] [hep-th/9711200] [INSPIRE]. · Zbl 0914.53047
[2] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP02 (2013) 062 [arXiv:1207.3123] [INSPIRE]. · Zbl 1342.83121 · doi:10.1007/JHEP02(2013)062
[3] A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An apologia for firewalls, JHEP09 (2013) 018 [arXiv:1304.6483] [INSPIRE]. · doi:10.1007/JHEP09(2013)018
[4] D. Marolf and J. Polchinski, Gauge/gravity duality and the black hole interior, Phys. Rev. Lett.111 (2013) 171301 [arXiv:1307.4706] [INSPIRE]. · doi:10.1103/PhysRevLett.111.171301
[5] K. Papadodimas and S. Raju, State-dependent bulk-boundary maps and black hole complementarity, arXiv:1310.6335 [INSPIRE].
[6] S.B. Giddings, Black holes, quantum information and unitary evolution, Phys. Rev.D 85 (2012) 124063 [arXiv:1201.1037] [INSPIRE].
[7] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys.61 (2013) 781 [arXiv:1306.0533] [INSPIRE]. · Zbl 1338.83057 · doi:10.1002/prop.201300020
[8] R. Bousso, Complementarity is not enough, Phys. Rev.D 87 (2013) 124023 [arXiv:1207.5192] [INSPIRE].
[9] K. Papadodimas and S. Raju, An infalling observer in AdS/CFT, JHEP10 (2013) 212 [arXiv:1211.6767] [INSPIRE]. · doi:10.1007/JHEP10(2013)212
[10] S.G. Avery, B.D. Chowdhury and A. Puhm, Unitarity and fuzzball complementarity: ’Alice fuzzes but may not even know it!’, JHEP09 (2013) 012 [arXiv:1210.6996] [INSPIRE]. · doi:10.1007/JHEP09(2013)012
[11] P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev.D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].
[12] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP08 (2006) 045 [hep-th/0605073] [INSPIRE]. · doi:10.1088/1126-6708/2006/08/045
[13] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP07 (2007) 062 [arXiv:0705.0016] [INSPIRE]. · doi:10.1088/1126-6708/2007/07/062
[14] J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett.80 (1998) 4859 [hep-th/9803002] [INSPIRE]. · Zbl 0947.81128 · doi:10.1103/PhysRevLett.80.4859
[15] V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP07 (2012) 093 [arXiv:1203.1044] [INSPIRE]. · Zbl 1397.83155 · doi:10.1007/JHEP07(2012)093
[16] S.S. Pal, Extremal surfaces and entanglement entropy, arXiv:1312.0088 [INSPIRE]. · Zbl 1285.81059
[17] L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP02 (2004) 014 [hep-th/0306170] [INSPIRE]. · doi:10.1088/1126-6708/2004/02/014
[18] T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP05 (2013) 014 [arXiv:1303.1080] [INSPIRE]. · Zbl 1342.83170 · doi:10.1007/JHEP05(2013)014
[19] J. Maldacena and G.L. Pimentel, Entanglement entropy in de Sitter space, JHEP02 (2013) 038 [arXiv:1210.7244] [INSPIRE]. · Zbl 1342.83253 · doi:10.1007/JHEP02(2013)038
[20] N. Engelhardt and G.T. Horowitz, Entanglement entropy near cosmological singularities, JHEP06 (2013) 041 [arXiv:1303.4442] [INSPIRE]. · Zbl 1342.83238 · doi:10.1007/JHEP06(2013)041
[21] W. Fischler, S. Kundu, and J.F. Pedraza, Entanglement and out-of-equilibrium dynamics in holographic models of de Sitter QFTs, arXiv:1311.5519.
[22] H. Liu and S.J. Suh, Entanglement growth during thermalization in holographic systems, arXiv:1311.1200 [INSPIRE].
[23] W.W. Meeks III, and S.T. Yau, The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z.179 (1982) 151. · Zbl 0479.49026 · doi:10.1007/BF01214308
[24] R. Schoen and L. Simon, Regularity of stable minimal hypersurfaces, Comm. Pure. Appl. Math.34 (1981) 741. · Zbl 0497.49034 · doi:10.1002/cpa.3160340603
[25] E. Spadaro, Mean-convex sets and minimal barriers, arXiv:1112.4288. · Zbl 1434.53011
[26] A.C. Wall, The generalized second law implies a quantum singularity theorem, Class. Quant. Grav.30 (2013) 165003 [Erratum ibid.30 (2013) 199501] [arXiv:1010.5513] [INSPIRE]. · Zbl 1273.83126 · doi:10.1088/0264-9381/30/16/165003
[27] S.W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett.26 (1971) 1344 [INSPIRE]. · doi:10.1103/PhysRevLett.26.1344
[28] D. Marolf and A.C. Wall, Eternal black holes and superselection in AdS/CFT, Class. Quant. Grav.30 (2013) 025001 [arXiv:1210.3590] [INSPIRE]. · Zbl 1263.83100 · doi:10.1088/0264-9381/30/2/025001
[29] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav.29 (2012) 155009 [arXiv:1204.1330] [INSPIRE]. · Zbl 1248.83029 · doi:10.1088/0264-9381/29/15/155009
[30] T. Hertog and G.T. Horowitz, Towards a big crunch dual, JHEP07 (2004) 073 [hep-th/0406134] [INSPIRE]. · doi:10.1088/1126-6708/2004/07/073
[31] N. Engelhardt, T. Hertog and G. Horowitz, work in progress.
[32] M. Mars, Stability of MOTS in totally geodesic null horizons, Class. Quant. Grav.29 (2012) 145019 [arXiv:1205.1724] [INSPIRE]. · Zbl 1248.83097 · doi:10.1088/0264-9381/29/14/145019
[33] P. Háj́ic̃ek, Exact models of charged black holes. I. Geometry of totally geodesic null hypersurface, Commun. Math. Phys.34 (1973) 37. · Zbl 0269.53015 · doi:10.1007/BF01646541
[34] S.W. Hawking and G.F.R. Ellis, The large scale structure of spacetime, Cambridge University Press, Cambridge U.K. (1973). · Zbl 0265.53054 · doi:10.1017/CBO9780511524646
[35] M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev.D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].
[36] A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, arXiv:1211.3494 [INSPIRE]. · Zbl 1304.81139
[37] V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP06 (2012) 114 [arXiv:1204.1698] [INSPIRE]. · Zbl 1397.81422 · doi:10.1007/JHEP06(2012)114
[38] R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev.D 86 (2012) 046009 [arXiv:1203.6619] [INSPIRE].
[39] J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev.D 62 (2000) 044041 [hep-th/0002111] [INSPIRE].
[40] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic entanglement entropy, JHEP11 (2013) 074 [arXiv:1307.2892] [INSPIRE]. · Zbl 1392.81021 · doi:10.1007/JHEP11(2013)074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.