×

Improved guarantees for vertex sparsification in planar graphs. (English) Zbl 1431.05047

Summary: Graph sparsification aims at compressing large graphs into smaller ones while preserving important characteristics of the input graph. In this work, we study vertex sparsifiers, i.e., sparsifiers whose goal is to reduce the number of vertices. We focus on the following notions: (1) given a digraph \(G=(V,E)\) and terminal vertices \(K \subset V\) with \(|K| = k\), a (vertex) reachability sparsifier of \(G\) is a digraph \(H=(V_H,E_H), K \subset V_H\) that preserves all reachability information among terminal pairs. Let \(|V_H|\) denote the size of \(H\). In this work, we introduce the notion of reachability-preserving minors (RPMs), i.e., we require \(H\) to be a minor of \(G\). We show any directed graph \(G\) admits an RPM \(H\) of size \(O(k^3)\), and if \(G\) is planar, then the size of \(H\) improves to \(O(k^2 \log k)\). We complement our upper bound by showing that there exists an infinite family of grids such that any RPM must have \(\Omega(k^2)\) vertices. (2) Given a weighted undirected graph \(G=(V,E)\) and terminal vertices \(K\) with \(|K|=k\), an exact (vertex) cut sparsifier of \(G\) is a graph \(H\) with \(K \subset V_H\) that preserves the value of minimum cuts separating any bipartition of \(K\). We show that planar graphs with all the \(k\) terminals lying on the same face admit exact cut sparsifiers of size \(O(k^2)\) that are also planar. Our result extends to flow and distance sparsifiers. It improves the previous best-known bound of \(O(k^22^{2k})\) for cut and flow sparsifiers by an exponential factor and matches an \(\Omega(k^2)\) lower-bound for this class of graphs.

MSC:

05C10 Planar graphs; geometric and topological aspects of graph theory
05C83 Graph minors
05C85 Graph algorithms (graph-theoretic aspects)

References:

[1] A. Abboud and G. Bodwin, The 4/3 additive spanner exponent is tight, in Proceedings of the 48th ACM Symposium on Theory of Computing, 2016, pp. 351-361. · Zbl 1376.05094
[2] A. Abboud and G. Bodwin, Reachability preservers: New extremal bounds and approximation algorithms, in Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms, 2018, pp. 1865-1883. · Zbl 1403.68141
[3] A. Abboud, G. Bodwin, and S. Pettie, A hierarchy of lower bounds for sublinear additive spanners, in Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms, 2017, pp. 568-576. · Zbl 1410.68265
[4] A. Abboud, P. Gawrychowski, S. Mozes, and O. Weimann, Near-optimal compression for the planar graph metric, in Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms, 2018, pp. 530-549. · Zbl 1403.68142
[5] A. V. Aho, M. R. Garey, and J. D. Ullman, The transitive reduction of a directed graph, SIAM J. Comput., 1 (1972), pp. 131-137. · Zbl 0247.05128
[6] A. Andoni, A. Gupta, and R. Krauthgamer, Towards \((1+ \varepsilon )\)-approximate flow sparsifiers, in Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms, 2014, pp. 279-293. · Zbl 1422.68280
[7] B. Awerbuch, Complexity of network synchronization, J. ACM, 32 (1985), pp. 804-823. · Zbl 0628.68045
[8] A. A. Benczúr and D. R. Karger, Approximating s-t minimum cuts in \(O͂(n^2)\) time, in Proceedings of the 28th ACM Symposium on Theory of Computing, 1996, pp. 47-55. · Zbl 0924.68150
[9] A. Bernstein, K. Däubel, Y. Disser, M. Klimm, T. Mütze, and F. Smolny, Distance-preserving graph contractions, SIAM J. Discrete Math., 33 (2019), pp. 1607-1636. · Zbl 1430.68177
[10] G. Bodwin, Linear size distance preservers, in Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms, 2017, pp. 600-615. · Zbl 1410.05033
[11] T.-H. H. Chan, D. Xia, G. Konjevod, and A. Richa, A tight lower bound for the steiner point removal problem on trees, in Proceedings of the 9th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, 2006, pp. 70-81. · Zbl 1155.68394
[12] H.-C. Chang, P. Gawrychowski, S. Mozes, and O. Weimann, Near-optimal distance emulator for planar graphs, in Proceedings of the 26th European Symposium on Algorithms, 2018. · Zbl 1522.68390
[13] M. Charikar, T. Leighton, S. Li, and A. Moitra, Vertex sparsifiers and abstract rounding algorithms, in Proceedings of the 51th IEEE Symposium on Foundations of Computer Science, 2010, pp. 265-274.
[14] S. Chaudhuri, K. Subrahmanyam, F. Wagner, and C. D. Zaroliagis, Computing mimicking networks, Algorithmica, 26 (2000), pp. 31-49. · Zbl 0949.68166
[15] C. Chekuri, A. Gupta, I. Newman, Y. Rabinovich, and A. Sinclair, Embedding k-outerplanar graphs into l1, SIAM J. Discrete Math., 20 (2006), pp. 119-136. · Zbl 1111.05022
[16] C. Chekuri, S. Khanna, and F. B. Shepherd, Edge-disjoint paths in planar graphs with constant congestion, SIAM J. Comput., 39 (2009), pp. 281-301. · Zbl 1185.68848
[17] C. Chekuri, F. B. Shepherd, and C. Weibel, Flow-cut gaps for integer and fractional multiflows, in Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms, 2010, pp. 1198-1208. · Zbl 1288.05119
[18] Y. K. Cheung, Steiner point removal-distant terminals don’t (really) bother, in Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms, 2018, pp. 1353-1360. · Zbl 1403.68153
[19] Y. K. Cheung, G. Goranci, and M. Henzinger, Graph minors for preserving terminal distances approximately-lower and upper bounds, in Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming, 2016, pp. 131:1-131:14. · Zbl 1388.68214
[20] J. Chuzhoy, On vertex sparsifiers with steiner nodes, in Proceedings of the 44th ACM Symposium on Theory of Computing, 2012, pp. 673-688. · Zbl 1286.05132
[21] J. Chuzhoy, Routing in undirected graphs with constant congestion, in Proceedings of the 44th ACM Symposium on Theory of Computing, 2012, pp. 855-874. · Zbl 1286.05061
[22] D. Coppersmith and M. Elkin, Sparse sourcewise and pairwise distance preservers, SIAM J. Discrete Math., 20 (2006), pp. 463-501. · Zbl 1118.05025
[23] E. B. Curtis, D. Ingerman, and J. A. Morrow, Circular planar graphs and resistor networks, Linear Algebra Appl., 283 (1998), pp. 115-150. · Zbl 0931.05051
[24] K. Diks and P. Sankowski, Dynamic plane transitive closure, in Proceedings of the 15th European Symposium on Algorithms, 2007, pp. 594-604. · Zbl 1151.05330
[25] M. Englert, A. Gupta, R. Krauthgamer, H. Räcke, I. Talgam-Cohen, and K. Talwar, Vertex sparsifiers: New results from old techniques, SIAM J. Comput., 43 (2014), pp. 1239-1262. · Zbl 1302.90234
[26] T. A. Feo and J. S. Provan, Delta-Wye transformations and the efficient reduction of two-terminal planar graphs, Oper. Res., 41 (1993), pp. 572-582. · Zbl 0784.90095
[27] A. Filtser, Steiner point removal with distortion o(log k), in Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms, 2018, pp. 1361-1373. · Zbl 1403.68161
[28] K. Gajjar and J. Radhakrishnan, Distance-preserving subgraphs of interval graphs, in Proceedings of the 25th European Symposium on Algorithms, 2017, pp. 39:1-39:13. · Zbl 1442.05140
[29] I. Gitler, Delta-Wye-Delta Transformations: Algorithms and Applications, Ph.D. thesis, Department of Combinatorics and Optimization, University of Waterloo, 1991.
[30] G. Goranci, M. Henzinger, and P. Peng, Improved guarantees for vertex sparsification in planar graphs, in Proceedings of the 25th European Symposium on Algorithms, 2017, pp. 45:1-45:14. · Zbl 1442.68171
[31] G. Goranci and H. Räcke, Vertex sparsification in trees, in Proceedings of the 14th International Workshop on Approximation and Online Algorithms, 2016, pp. 103-115. · Zbl 1486.05041
[32] A. Gupta, Steiner points in tree metrics don’t (really) help, in Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms, 2001, pp. 220-227. · Zbl 0990.05033
[33] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde, Characterizing multiterminal flow networks and computing flows in networks of small treewidth, J. Comput. System Sci., 57 (1998), pp. 366-375. · Zbl 0917.68013
[34] S.-E. Huang and S. Pettie, Lower bounds on sparse spanners, emulators, and diameter-reducing shortcuts, in 16th Scandinavian Symposium and Workshops on Algorithm Theory, 2018, pp. 26:1-26:12. · Zbl 1477.68230
[35] L. Kamma, R. Krauthgamer, and H. L. Nguyen, Cutting corners cheaply, or how to remove Steiner points, SIAM J. Comput., 44 (2015), pp. 975-995. · Zbl 1328.05059
[36] N. Karpov, M. Pilipczuk, and A. Zych-Pawlewicz, An exponential lower bound for cut sparsifiers in planar graphs, Algorithmica, 81 (2019), pp. 4029-4042. · Zbl 1430.68220
[37] I. Katriel, M. Kutz, and M. Skutella, Reachability Substitutes for Planar Digraphs, Technical report MPI-I-2005-1-002, Max-Planck-Institut für Informatik, 2005.
[38] A. E. Kennelly, The equivalence of triangles and three-pointed stars in conducting networks, Electrical World Engineer, 34 (1899), pp. 413-414.
[39] A. Khan and P. Raghavendra, On mimicking networks representing minimum terminal cuts, Inform. Process. Lett., 114 (2014), pp. 365-371. · Zbl 1284.05295
[40] R. Krauthgamer, H. L. Nguyen, and T. Zondiner, Preserving terminal distances using minors, SIAM J. Discrete Math., 28 (2014), pp. 127-141. · Zbl 1293.05083
[41] R. Krauthgamer and I. Rika, Mimicking networks and succinct representations of terminal cuts, in Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms, 2013, pp. 1789-1799. · Zbl 1423.68352
[42] R. Krauthgamer and I. Rika, Refined Vertex Sparsifiers of Planar Graphs, CoRR abs/1702.05951, 2017. · Zbl 1439.68017
[43] R. Krauthgamer and T. Zondiner, Preserving terminal distances using minors, in Proceedings of the 39th International Colloquium on Automata, Languages, and Programming, 2012, pp. 594-605. · Zbl 1271.05092
[44] F. Lazebnik, V. A. Ustimenko, and A. J. Woldar, A new series of dense graphs of high girth, Bull. Amer. Math. Soc., 32 (1995), pp. 73-79. · Zbl 0822.05039
[45] F. Lazebnik, V. A. Ustimenko, and A. J. Woldar, A characterization of the components of the graphs d (k, q), Discrete Math., 157 (1996), pp. 271-283. · Zbl 0861.05051
[46] J. R. Lee, M. Mendel, and M. Moharrami, A node-capacitated Okamura-Seymour theorem, in Proceedings of the 45th ACM Symposium on Theory of Computing, 2013, pp. 495-504. · Zbl 1293.05147
[47] F. T. Leighton and A. Moitra, Extensions and limits to vertex sparsification, in Proceedings of the 42nd ACM Symposium on Theory of Computing, 2010, pp. 47-56. · Zbl 1293.05149
[48] K. Makarychev and Y. Makarychev, Metric extension operators, vertex sparsifiers and lipschitz extendability, in Proceedings of the 51th IEEE Symposium on Foundations of Computer Science, 2010, pp. 255-264. · Zbl 1341.05104
[49] J. Matoušek, On the distortion required for embedding finite metric spaces into normed spaces, Israel J. Math., 93 (1996), pp. 333-344. · Zbl 0851.46007
[50] A. Moitra, Approximation algorithms for multicommodity-type problems with guarantees independent of the graph size, in Proceedings of the 50th IEEE Symposium on Foundations of Computer Science, 2009. · Zbl 1292.05251
[51] H. Okamura and P. D. Seymour, Multicommodity flows in planar graphs, J. Combin. Theory Ser. B, 31 (1981), pp. 75-81. · Zbl 0465.90029
[52] D. A. Spielman and S. Teng, Spectral sparsification of graphs, SIAM J. Comput., 40 (2011), pp. 981-1025. · Zbl 1228.68040
[53] S. Subramanian, A fully dynamic data structure for reachability in planar digraphs, in Proceedings of the 1st European Symposium on Algorithms, 1993, pp. 372-383.
[54] R. Tamassia and I. G. Tollis, Planar grid embedding in linear time, IEEE Trans. Circuits Syst., 36 (1989), pp. 1230-1234.
[55] R. E. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972), pp. 146-160. · Zbl 0251.05107
[56] M. Thorup, Compact oracles for reachability and approximate distances in planar digraphs, J. ACM, 51 (2004), pp. 993-1024. · Zbl 1125.68394
[57] M. Thorup and U. Zwick, Approximate distance oracles, J. ACM, 52 (2005), pp. 1-24. · Zbl 1175.68303
[58] L. G. Valiant, Universality considerations in VLSI circuits, IEEE Trans. Computers, 30 (1981), pp. 135-140. · Zbl 0455.94046
[59] R. M. Wilson, An existence theory for pairwise balanced designs, III: Proof of the existence conjectures, J. Combin. Theory Ser. A, 18 (1975), pp. 71-79. · Zbl 0295.05002
[60] D. P. Woodruff, Lower bounds for additive spanners, emulators, and more, in Proceedings of the 47th IEEE Symposium on Foundations of Computer Science, 2006, pp. 389-398.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.