×

Metric extension operators, vertex sparsifiers and Lipschitz extendability. (English) Zbl 1341.05104

Summary: We study vertex cut and flow sparsifiers that were recently introduced by A. Moitra [in: 2009 IEEE 50th annual symposium on foundations of computer science – FOCS 2009. Proceedings of the symposium, Atlanta, GA, USA, October 24–27, 2009. Los Alamitos, CA: IEEE Computer Society. 3–12 (2009; Zbl 1292.05251)], and T. Leighton and A. Moitra [in: Proceedings of the 42nd annual ACM symposium on theory of computing, STOC ’10. Cambridge, MA, USA, June 5–8, 2010. New York, NY: Association for Computing Machinery (ACM). 47–56 (2010; Zbl 1293.05149)]. We improve and generalize their results. We give a new polynomial-time algorithm for constructing \(O(\log k/ \log \log k)\) cut and flow sparsifiers, matching the best known existential upper bound on the quality of a sparsifier, and improving the previous algorithmic upper bound of \(O(\log^{2}k/ \log \log k)\). We show that flow sparsifiers can be obtained from linear operators approximating minimum metric extensions. We introduce the notion of (linear) metric extension operators, prove that they exist, and give an exact polynomial-time algorithm for finding optimal operators.
We then establish a direct connection between flow and cut sparsifiers and Lipschitz extendability of maps in Banach spaces, a notion studied in functional analysis since 1930s. Using this connection, we obtain a lower bound of \(\Omega \left( {\sqrt {\log k/\log \log k} } \right)\) for flow sparsifiers and a lower bound of \(\Omega \left( {\sqrt {\log k} /\log \log k} \right)\) for cut sparsifiers. We show that if a certain open question posed by K. Ball [Geom. Funct. Anal. 2, No. 2, 137–172 (1992; Zbl 0788.46050)] has a positive answer, then there exist \(\tilde O\left( {\sqrt {\log k} } \right)\) cut sparsifiers. On the other hand, any lower bound on cut sparsifiers better than \(\tilde \Omega \left( {\sqrt {\log k} } \right)\) would imply a negative answer to this question.

MSC:

05C21 Flows in graphs
05C85 Graph algorithms (graph-theoretic aspects)
68W25 Approximation algorithms
90C35 Programming involving graphs or networks

References:

[1] S. Arora, J. Lee and A. Naor, Fréchet embeddings of negative type metrics. Discrete & Computational Geometry 38 (2007), 726-739. · Zbl 1136.46008 · doi:10.1007/s00454-007-9007-0
[2] S. Arora, S. Rao and U. Vazirani, Expander flows, geometric embeddings, and graph partitionings, in Proceedings of the 36th Annual ACM Symposium on Theory of Computing, ACM, New York, 2004, pp. 222-231. · Zbl 1192.68467
[3] K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geometric and Functional Analysis 2 (1992), 137-172. · Zbl 0788.46050 · doi:10.1007/BF01896971
[4] J. Bourgain, A counterexample to a complementation problem, Compositio Mathematica 43 (1981), 133-144. · Zbl 0437.46016
[5] G. Calinescu, H. Karloff and Y. Rabani, Approximation algorithms for the 0-extension problem, in Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (Washington, DC, 2001), SIAM, Philadelphia, PA, 2001, pp. 8-16. · Zbl 0987.05086
[6] M. Charikar, T. Leighton, S. Li and A. Moitra, Vertex sparsifiers and abstract rounding algorithms, in Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2010), IEEE Computer Society, Los Alamitos, CA, 2010, pp. 265-274.
[7] M. Englert, A. Gupta, R. Krauthgamer, H. Räcke, I. Talgam-Cohen and K. Talwar, Vertex sparsifiers: New results from old techniques, in Approximation, Randomization, and Combinatorial Optimization, Lecture Notes in Computer Science, Vol. 6302, Springer, Berlin, 2010, pp. 152-165. · Zbl 1302.90233
[8] J. Fakcharoenphol, C. Harrelson, S. Rao and K Talwar, An improved approximation algorithm for the 0-extension problem, in Proceedings of the Fourteenth Annual ACMSIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003), ACM, New York, 2003, pp. 257-265. · Zbl 1094.68701
[9] J. Fakcharoenphol and K. Talwar, An improved decomposition theorem for graphs excluding a fixed minor, in Approximation, Randomization, and Combinatorial Optimization, Lecture Notes in Computer Science, Vol. 2764, Springer, Berlin, 2003, pp. 36-46. · Zbl 1279.05053
[10] T. Figiel, W. Johnson and G. Schechtman, Factorizations of natural embeddings of ln p into Lr, I, Studia Mathematica 89 (1988), 79-103. · Zbl 0671.46009
[11] B. Grünbaum, Projection constants, Transactions of the American Mathematical Society, 95 (1960), 451-465. · Zbl 0095.09002 · doi:10.2307/1993567
[12] U. Haagerup, The best constants in the Khintchine inequality, Studia Mathematica 70 (1981), 231-283. · Zbl 0501.46015
[13] W. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, in Conference in Modern Analysis and Probability (New Haven, Conn., 1982), Contemporary Mathematics, Vol. 26, American Mathematical Society, Providence, RI, 1984, pp. 189-206. · Zbl 0539.46017
[14] A. Karzanov, Minimum 0-extension of graph metrics, European Journal of Combinatorics 19 (1998), 71-101. · Zbl 0894.90147 · doi:10.1006/eujc.1997.0154
[15] B. Kashin, The widths of certain finite-dimensional sets and classes of smooth functions, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 41 (1977), 334-351. · Zbl 0354.46021
[16] M. D. Kirszbraun, Über die zusammenziehenden und Lipschitzchen Transformationen, Fundamenata Mathematicae 22 (1934), 77-108. · Zbl 0009.03904
[17] J. Lee and A. Naor, Extending Lipschitz functions via random metric partitions, Inventiones Mathematicae 160 (2005), 59-95. · Zbl 1074.46004 · doi:10.1007/s00222-004-0400-5
[18] J. Lee and A. Sidiropoulos, Genus and the geometry of the cut graph, in Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (Austin, TX, 2010) SIAM, Philadelphia, PA, 2010, pp. 193-201. · Zbl 1288.05062
[19] T. Leighton and A. Moitra, Extensions and limits to vertex sparsification, in Proceedings of the 2010 ACM International Symposium on Theory of Computing, ACM, New York, 2010, pp. 47-56. · Zbl 1293.05149
[20] M. B. Marcus and G. Pisier, Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes, Acta Mathematica 152 (1984), 245-301. · Zbl 0547.60047 · doi:10.1007/BF02392199
[21] E. J. McShane, Extension of range of functions, Bulletin of the American Mathematical Society 40 (1934), 837-842. · Zbl 0010.34606 · doi:10.1090/S0002-9904-1934-05978-0
[22] M. Mendel and A. Naor, Some applications of Ball’s extension theorem, Proceedings of the American Mathematical Society 134 (2006), 2577-2584. · Zbl 1108.46052 · doi:10.1090/S0002-9939-06-08298-0
[23] A. Moitra, Approximation algorithms for multicommodity-type problems with guarantees independent of the graph size, in Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (Atlanta, GA, 2009) IEEE Computer Society, Los Alamitos, CA, 2009, pp. 3-12. · Zbl 1292.05251
[24] A. Naor, Y. Peres, O. Schrammand S. Sheffield, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Mathematical Journal 134 (2006), 165-197. · Zbl 1108.46012 · doi:10.1215/S0012-7094-06-13415-4
[25] J. von Neumann, Zur Theorie der Gesellshaftsphiele, Mathematische Annalen 100 (1928), 295-320. · JFM 54.0543.02 · doi:10.1007/BF01448847
[26] H. Räcke, Optimal hierarchical decompositions for congestion minimization in networks, in Proceedings of the 40th Annual ACM Symposium on Theory of Computing (Victoria, BC, 2008), ACM, New York, 2008, pp. 255-264. · Zbl 1231.68051
[27] B. Randrianantoanina, Extensions of Lipschitz maps, International Conference on Banach Spaces and Operator Spaces, 2007.
[28] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and Combinatorics, Vol. 24, Springer, Berlin, 2003. · Zbl 1041.90001
[29] M. Sion, On general minimax theorems, Pacific Journal of Mathematics 8 (1958), 171-176. · Zbl 0081.11502 · doi:10.2140/pjm.1958.8.171
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.