×

Gamma factors of intertwining periods and distinction for inner forms of \(\operatorname{GL}(n)\). (English) Zbl 1471.11171

Summary: Let \(F\) be a \(p\)-adic field, \(E\) be a quadratic extension of \(F\), \(D\) be an \(F\)-central division algebra of odd index and let \(\theta\) be the Galois involution attached to \(E / F\). Set \(H = \operatorname{GL}(m, D)\), \(G = \operatorname{GL}(m, D \otimes_F E)\), and let \(P = M U\) be a standard parabolic subgroup of \(G\). Let \(w\) be a Weyl involution stabilizing \(M\) and \(M^{\theta_w}\) be the subgroup of \(M\) fixed by the involution \(\theta_w : m \mapsto \theta(w m w)\). We denote by \(X ( M )^{w , -}\) the complex torus of \(w\)-anti-invariant unramified characters of \(M\). Following the global methods of [H. Jacquet et al., J. Am. Math. Soc. 12, No. 1, 173–240 (1999; Zbl 1012.11044)], we associate to a finite length representation \(\sigma\) of \(M\) and to a linear form \(L \in \operatorname{Hom}_{M^{\theta_w}}(\sigma, \mathbb{C})\) a family of \(H\)-invariant linear forms called intertwining periods on \(\operatorname{Ind}_P^G(\chi \sigma)\) for \(\chi \in X ( M )^{w , -} \), which is meromorphic in the variable \(\chi \). Then we give sufficient conditions for some of these intertwining periods, namely the open intertwining periods studied in [P. Blanc and P. Delorme, Ann. Inst. Fourier 58, No. 1, 213–261 (2008; Zbl 1151.22012)], to have singularities. By a local/global method, we also compute in terms of Asai gamma factors the proportionality constants involved in their functional equations with respect to certain intertwining operators. As a consequence, we classify distinguished unitary and ladder representations of \(G\), extending respectively the results of [the author, Pac. J. Math. 271, No. 2, 445–460 (2014; Zbl 1305.22024)] and [M. Gurevich, Math. Z. 281, No. 3–4, 1111–1127 (2015; Zbl 1344.22007)] for \(D = F\), which both relied at some crucial step on the theory of Bernstein-Zelevinsky derivatives. We make use of one of the main results of [R. Beuzart-Plessis, Invent. Math. 214, No. 1, 437–521 (2018; Zbl 1409.22011)] which in the case of the group \(G\) asserts that the Jacquet-Langlands correspondence preserves distinction. Such a result is for essentially square-integrable representations, but our method in fact allows us to use it only for cuspidal representations of \(G\).

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E50 Representations of Lie and linear algebraic groups over local fields
22E35 Analysis on \(p\)-adic Lie groups
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols

References:

[1] Aizenbud, A.; Gourevitch, D.; Sahi, S., Derivatives for smooth representations of \(\operatorname{GL}(n, \mathbb{R})\) and \(\operatorname{GL}(n, C)\), Isr. J. Math., 206, 1, 1-38 (2015) · Zbl 1317.22008
[2] Anandavardhanan, U. K.; Kable, A. C.; Tandon, R., Distinguished representations and poles of twisted tensor L-functions, Proc. Am. Math. Soc., 132, 10, 2875-2883 (2004) · Zbl 1122.11033
[3] Anandavardhanan, U. K.; Rajan, C. S., Distinguished representations, base change, and reducibility for unitary groups, Int. Math. Res. Not., 14, 841-854 (2005) · Zbl 1070.22011
[4] Arthur, J., Intertwining operators and residues, I. Weighted characters, J. Funct. Anal., 84, 1, 19-84 (1989) · Zbl 0679.22011
[5] Arthur, J.; Clozel, L., Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Annals of Mathematics Studies, vol. 120 (1989), Princeton University Press: Princeton University Press Princeton, NJ, 0-691-08518-8, xiv+230 pp · Zbl 0682.10022
[6] Ash, A.; Ginzburg, D.; Rallis, S., Vanishing periods of cusp forms over modular symbols, Math. Ann., 296, 4, 709-723 (1993) · Zbl 0786.11028
[7] Badulescu, A. I.; Renard, D. A., Sur une conjecture de Tadic, Glas. Mat. Ser. III, 39(59), 1, 49-54 (2004) · Zbl 1060.22015
[8] Badulescu, I., Jacquet-Langlands et unitarisabilité, J. Inst. Math. Jussieu, 6, 3, 349-379 (2007) · Zbl 1159.22005
[9] Badulescu, I., Global Jacquet-Langlands correspondence, multiplicity one and classification of automorphic representations, Invent. Math., 172, 2, 383-438 (2008), With an appendix by Neven Grbac · Zbl 1158.22018
[10] Bernstein, J. N.; Zelevinsky, A. V., Induced representations of reductive p-adic groups, Ann. Sc. E.N.S., 10, 4, 441-472 (1977) · Zbl 0412.22015
[11] Bernstein, J. N.; Krötz, B., Smooth Fréchet globalizations of Harish-Chandra modules, Isr. J. Math., 199, 1, 45-111 (2014) · Zbl 1294.22010
[12] Beuzart-Plessis, R., On distinguished square-integrable representations for Galois pairs and a conjecture of Prasad, Invent. Math., 214, 1, 437-521 (2018) · Zbl 1409.22011
[13] Blanc, P.; Delorme, P., Vecteurs distributions H-invariants de représentations induites, pour un espace symétrique réductif p-adique \(G / H\), Ann. Inst. Fourier (Grenoble), 58, 1, 213-261 (2008) · Zbl 1151.22012
[14] Brylinski, J.-L.; Delorme, P., Vecteurs distributions H-invariants pour les séries principales généralisées d’espaces symétriques réductifs et prolongement méromorphe d’intégrales d’Eisenstein, Invent. Math., 109, 3, 619-664 (1992) · Zbl 0785.22014
[15] Borel, A.; Jacquet, H., Automorphic forms and automorphic representations, (Proc. Sympos. Pure Math., XXXIII, Automorphic Forms, Representations and L-Functions. Proc. Sympos. Pure Math., XXXIII, Automorphic Forms, Representations and L-Functions, Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977, Part 1 (1979), Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I.), 189-207 · Zbl 0414.22020
[16] Casselman, W., Canonical extensions of Harish-Chandra modules to representations of G, Can. J. Math., 41, 3, 385-438 (1989) · Zbl 0702.22016
[17] Carmona, J.; Delorme, P., Base méromorphe de vecteurs distributions H-invariants pour les séries principales généralisées d’espaces symétriques réductifs: equation fonctionnelle, J. Funct. Anal., 122, 1, 152-221 (1994) · Zbl 0831.22004
[18] Clozel, L., On limit multiplicites of discrete series representations in spaces of automorphic forms, Invent. Math., 83, 265-284 (1986) · Zbl 0582.22012
[19] Coniglio-Guilloton, C., Correspondance de Jacquet-Langlands et distinction: cas de certaines series discretes non cuspidales de niveau 0 · Zbl 1348.22023
[20] Deligne, P.; Kazhdan, D.; Vigneras, M.-F., Représentations des algèbres centrales simples p-adiques. Representations of reductive groups over a local field, 33-117 (1984), Hermann: Hermann Paris, Travaux en cours · Zbl 0583.22009
[21] Feigon, B.; Lapid, E.; Offen, O., On representations distinguished by unitary groups, Publ. Math. Inst. Hautes Études Sci., 115, 185-323 (2012) · Zbl 1329.11053
[22] Flicker, Y., Twisted tensors and Euler products, Bull. Soc. Math. Fr., 116, 3, 295-313 (1988) · Zbl 0674.10026
[23] Flicker, Y., On distinguished representations, J. Reine Angew. Math., 418, 139-172 (1991) · Zbl 0725.11026
[24] Flicker, Y., On zeroes of the twisted tensor L-function, Math. Ann., 297, 2, 199-219 (1993) · Zbl 0786.11030
[25] Gelfand, I. M.; Kazhdan, D. A., Representations of the group \(\operatorname{GL}(n, K)\) where K is a local field, (Lie Groups and Their Representations, Proc. Summer School. Lie Groups and Their Representations, Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971 (1975), Halsted: Halsted New York), 95-118 · Zbl 0348.22011
[26] Gurevich, M., On a local conjecture of Jacquet, ladder representations and standard modules, Math. Z., 281, 3, 1111-1127 (December 2015) · Zbl 1344.22007
[27] Gurevich, M.; Ma, J.-J.; Mitra, A., On two questions concerning representations distinguished by the Galois involution, Forum Math., 30, 1, 141-157 (2018) · Zbl 1395.22007
[28] Hiraga, K.; Saito, H., On L-packets for inner forms of SLn, Mem. Am. Math. Soc., 215, 1013 (2012) · Zbl 1242.22023
[29] Jacquet, H., Archimedean Rankin-Selberg integrals, (Automorphic Forms and L-functions II. Local Aspects. Automorphic Forms and L-functions II. Local Aspects, Contemp. Math., vol. 489 (2009), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 57-172 · Zbl 1250.11051
[30] Jacquet, H.; Lapid, E.; Rogawsky, J., Periods of automorphic forms, J. Am. Math. Soc., 12, 1, 173-240 (1999) · Zbl 1012.11044
[31] Jacquet, H.; Piatetskii-Shapiro, I. I.; Shalika, J. A., Rankin-Selberg convolutions, Am. J. Math., 105, 2, 367-464 (1983) · Zbl 0525.22018
[32] Jacquet, H.; Shalika, J. A., On Euler products and the classification of automorphic representations, I, Am. J. Math., 103, 3, 499-558 (1981) · Zbl 0473.12008
[33] Kable, A. C., Asai L-functions and Jacquet’s conjecture, Am. J. Math., 126, 4, 789-820 (2004) · Zbl 1061.11023
[34] Kret, A.; Lapid, E., Jacquet modules of ladder representations, C. R. Math. Acad. Sci. Paris, 350, 21-22, 937-940 (2012) · Zbl 1253.22011
[35] Lagier, N., Terme constant de fonctions sur un espace symétrique réductif p-adique, J. Funct. Anal., 254, 4, 1088-1145 (2008) · Zbl 1194.22010
[36] Lapid, E.; Mingez, A., On a determinantal formula of Tadic, Am. J. Math., 136, 1, 111-142 (2014) · Zbl 1288.22013
[37] Lapid, E.; Rogawski, J., Periods of Eisenstein series: the Galois case, Duke Math. J., 120, 1, 153-226 (2003) · Zbl 1037.11033
[38] Langlands, R. P., Euler products, (A James K. Whittemore Lecture in Mathematics Given at Yale University, 1967. A James K. Whittemore Lecture in Mathematics Given at Yale University, 1967, Yale Mathematical Monographs, vol. 1 (1971), Yale University Press: Yale University Press New Haven, Conn.-London), v+53 pp · Zbl 0231.20017
[39] Matringe, N., Conjectures about distinction and local Asai L-functions, Int. Math. Res. Not., 9, 1699-1741 (2009) · Zbl 1225.22014
[40] Matringe, N., Distinguished representations and exceptional poles of the Asai-L-function, Manuscr. Math., 131, 3-4, 415-426 (2010) · Zbl 1218.11051
[41] Matringe, N., Distinguished generic representations of \(\operatorname{GL}(n)\) over p-adic fields, Int. Math. Res. Not., 1, 74-95 (2011) · Zbl 1223.22015
[42] Matringe, N., Unitary representations of \(\operatorname{GL}(n, K)\) distinguished by a Galois involution for a p-adic field K, Pac. J. Math., 271, 2, 445-460 (2014) · Zbl 1305.22024
[43] Matringe, N., Distinction of the Steinberg representation for inner forms of GL(n), Math. Z., 287, 3-4, 881-895 (2017) · Zbl 1381.22015
[44] Matringe, N.; Offen, O., Gamma factors, root numbers, and distinction, Can. J. Math., 70, 3, 683-701 (2018) · Zbl 1447.11063
[45] Moeglin, C.; Waldspurger, J.-L., Le spectre résiduel de GL(n), Ann. Sci. École Norm. Supér. (4), 22, 4, 605-674 (1989) · Zbl 0696.10023
[46] Moeglin, C.; Waldspurger, J.-L., Décomposition Spectrale et Séries d’Eisenstein, Progress in Mathematics, vol. 113 (1994), Birkhäuser Verlag: Birkhäuser Verlag Basel, xxx+342 pp · Zbl 0794.11022
[47] Minguez, A.; Sécherre, V., Représentations lisses modulo ℓ de \(G L_m(D)\), Duke Math. J., 163, 4, 795-887 (2014) · Zbl 1293.22005
[48] Offen, O., On symplectic periods of the discrete spectrum of GL(2n), Isr. J. Math., 154, 253-298 (2006) · Zbl 1148.11025
[49] Offen, O., Residual spectrum of GL(2n) distinguished by the symplectic group, Duke Math. J., 134, 2, 313-357 (2006) · Zbl 1220.11072
[50] Offen, O., On parabolic induction associated with a p-adic symmetric space, J. Number Theory, 170, 211-227 (2017) · Zbl 1420.22017
[51] Olshanskii, G. I., Intertwining operators and complementary series in the class of representations of the full matrix group over a locally compact division algebra that are induced by parabolic subgroups, Mat. Sb. (N. S.), 93, 135, 218-253 (1974), 326 · Zbl 0298.22016
[52] Platonov, V.; Rapinchuk, A., Algebraic Groups and Number Theory, Pure and Applied Mathematics, vol. 139 (1994), Academic Press, Inc.: Academic Press, Inc. Boston, MA, xii+614 pp · Zbl 0806.11002
[53] Sécherre, V., Proof of the Tadic conjecture U0 on the unitary dual of GL(m,D), J. Reine Angew. Math., 626, 187-204 (2009) · Zbl 1170.22009
[54] Shahidi, F., On certain L-functions, Am. J. Math., 103, 2, 297-355 (1981) · Zbl 0467.12013
[55] Shahidi, F., Fourier transforms of intertwining operators and Plancherel measures for GL(n), Am. J. Math., 106, 1, 67-111 (1984) · Zbl 0567.22008
[56] Shalika, J. A., The multiplicity one theorem for GLn, Ann. Math. (2), 100, 171-193 (1974) · Zbl 0316.12010
[57] Shin, S. W., Automorphic Plancherel density theorem, Isr. J. Math., 192, 1, 83-120 (2012) · Zbl 1300.22006
[58] Silberger, A. J., The Langlands quotient theorem for p-adic groups, Math. Ann., 236, 2, 95-104 (1978) · Zbl 0362.20029
[59] Tadic, M., Induced representations of GL(n, A) for p-adic division algebras A, J. Reine Angew. Math., 405, 48-77 (1990) · Zbl 0684.22008
[60] Waldspurger, J.-L., La formule de Plancherel pour les groupes p-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu, 2, 2, 235-333 (2003) · Zbl 1029.22016
[61] Wallach, N. R., Asymptotic expansions of generalized matrix entries of representations of real reductive groups, (Lie Group Representations, I. Lie Group Representations, I, College Park, Md., 1982/1983. Lie Group Representations, I. Lie Group Representations, I, College Park, Md., 1982/1983, Lecture Notes in Math., vol. 1024 (1983), Springer: Springer Berlin), 287-369 · Zbl 0553.22005
[62] Wallach, N. R., Real Reductive Groups. I, Pure and Applied Mathematics, vol. 132 (1988), Academic Press, Inc.: Academic Press, Inc. Boston, MA, xx+412 pp · Zbl 0666.22002
[63] Wallach, N. R., Real Reductive Groups. II, Pure and Applied Mathematics, vol. 132-II (1992), Academic Press, Inc.: Academic Press, Inc. Boston, MA, xiv+454 pp · Zbl 0785.22001
[64] Zelevinsky, A. V., Induced representations of reductive p-adic groups II, Ann. Sc. E.N.S., 13, 2, 165-210 (1980) · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.