×

Characterisation of the poles of the \(\ell \)-modular Asai L-factor. (Caractérisation des pôles du facteur d’Asai \(\ell\)-modulaire.) (English. French summary) Zbl 1473.22014

Summary: Let \(F/F_0\) be a quadratic extension of non-archimedean local fields of odd residual characteristic, set \(G=\mathrm{GL}_n(F)\), \(G_0=\mathrm{GL}_n(F_0)\) and let \(\ell\) be a prime number different from the residual characteristic of \(F\). For a complex cuspidal representation \(\pi\) of \(G\), the Asai \(L\)-factor \(L_{\text{As}}(X,\pi)\) has a pole at \(X=1\), if and only if \(\pi\) is \(G_0\)-distinguished. In this paper, we solve the problem of characterising the occurrence of a pole at \(X=1\) of \(L_{\text{As}}(X,\pi)\) when \(\pi\) is an \(\ell\)-modular cuspidal representation of \(G\); we show that \(L_{\text{As}}(X,\pi)\) has a pole at \(X=1\), if and only if \(\pi\) is a relatively banal distinguished representation, namely \(\pi\) is \(\mathrm{G}_{\circ}\)-distinguished but not \(\vert\det_{F_0}\)-distinguished. This notion turns out to be an exact analogue for the symmetric space \(G/G_0\) of Mínguez and Sécherre’s notion of banal cuspidal \(\overline{\mathbb{F}_\ell}\)-representation of \(G_0\).
Along the way, we compute the Asai \(L\)-factor of all cuspidal \(\ell\)-modular representations of \(G\) in terms of type theory and prove new results concerning lifting and reduction modulo \(\ell\) of distinguished cuspidal representations. Finally, we determine when the natural \(G_0\)-period on the Whittaker model of a distinguished cuspidal representation of \(G\) is non-zero.

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations

References:

[1] U. K. Anandavardhanan, A. C. Kable & R. Tandon -“Distin-guished representations and poles of twisted tensor L-functions”, Proc. Amer. Math. Soc. 132 (2004), no. 10, p. 2875-2883. · Zbl 1122.11033
[2] U. K. Anandavardhanan & N. Matringe -“Test vectors for finite periods and base change”, Adv. Math. 360 (2020), p. 106915, 27. · Zbl 1480.22007
[3] U. K. Anandavardhanan & C. S. Rajan -“Distinguished representa-tions, base change, and reducibility for unitary groups”, Int. Math. Res. Not. (2005), no. 14, p. 841-854. · Zbl 1070.22011
[4] U. Anandavardhanan, R. Kurinczuk, N. Matringe, V. Sécherre & S. Stevens -“Galois self-dual cuspidal types and Asai local factors”, arXiv:1807.07755. Accepted to appear in J. Eur. Math. Soc. · Zbl 1490.22010
[5] I. N. Bernstein & A. V. Zelevinsky -“Representations of the group GL(n, F ) where F is a non-Archimedean local field”, Russ. Math. Surv. 31 (1976), no. 3, p. 1-68 (English). · Zbl 0348.43007
[6] R. Beuzart-Plessis -“Plancherel formula for GL n (F)\GL n (E) and ap-plications to the Ichino-Ikeda and formal degree conjectures for unitary groups”, arXiv:1812.00047. · Zbl 1482.22018
[7] C. J. Bushnell & P. C. Kutzko -The admissible dual of GL(N ) via compact open subgroups, Annals of Mathematics Studies, vol. 129, Princeton University Press, Princeton, NJ, 1993. · Zbl 0787.22016
[8] P. Delorme -“Constant term of smooth H ψ -spherical functions on a re-ductive p-adic group”, Trans. Amer. Math. Soc. 362 (2010), no. 2, p. 933-955. · Zbl 1193.22014
[9] Y. Z. Flicker -“On distinguished representations”, J. Reine Angew. Math. 418 (1991), p. 139-172. · Zbl 0725.11026
[10] W. T. Gan, B. H. Gross & D. Prasad -“Symplectic local root num-bers, central critical L values, and restriction problems in the representa-tion theory of classical groups”, Astérisque (2012), no. 346, p. 1-109, Sur les conjectures de Gross et Prasad. I. · Zbl 1280.22019
[11] J. A. Green -“The characters of the finite general linear groups”, Trans. Amer. Math. Soc. 80 (1955), p. 402-447. · Zbl 0068.25605
[12] K. Hiraga, A. Ichino & T. Ikeda -“Formal degrees and adjoint γ-factors”, J. Amer. Math. Soc. 21 (2008), no. 1, p. 283-304. · Zbl 1131.22014
[13] G. James -“The irreducible representations of the finite general linear groups”, Proc. London Math. Soc. (3) 52 (1986), no. 2, p. 236-268. · Zbl 0587.20022
[14] A. C. Kable -“Asai L-functions and Jacquet”s conjecture”, Amer. J. Math. 126 (2004), no. 4, p. 789-820. · Zbl 1061.11023
[15] S.-i. Kato & K. Takano -“Subrepresentation theorem for p-adic sym-metric spaces”, Int. Math. Res. Not. IMRN (2008), no. 11, p. Art. ID rnn028, 40. · Zbl 1197.22007
[16] BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
[17] R. Kurinczuk -“ -modular representations of unramified p-adic U(2, 1)”, Algebra & Number Theory 8 (2014), no. 8, p. 1801-1838. · Zbl 1304.22022
[18] R. Kurinczuk & N. Matringe -“Rankin-Selberg local factors modulo ”, Selecta Math. (N.S.) 23 (2017), no. 1, p. 767-811. · Zbl 1385.11033
[19] , “Test vectors for local cuspidal Rankin-Selberg integrals”, Nagoya Math. J. (2017), p. 1-23.
[20] R. Kurinczuk, N. Matringe & V. Sécherre -“Galois distinguished -modular representations of p-adic GL n ”, In preparation.
[21] N. Matringe -“Distinguished representations and exceptional poles of the Asai-L-function”, Manuscripta Math. 131 (2010), no. 3-4, p. 415-426. · Zbl 1218.11051
[22] , “Distinguished generic representations of GL(n) over p-adic fields”, Int. Math. Res. Not. IMRN (2011), no. 1, p. 74-95. · Zbl 1223.22015
[23] A. Mínguez -“Fonctions zêta -modulaires”, Nagoya Math. J. 208 (2012), p. 39-65. · Zbl 1282.11157
[24] A. Mínguez & V. Sécherre -“Représentations banales de GL m (D)”, Compos. Math. 149 (2013), no. 4, p. 679-704. · Zbl 1283.22014
[25] , “Représentations lisses modulo de GL m (D)”, Duke Math. J. 163 (2014), no. 4, p. 795-887. · Zbl 1293.22005
[26] C. P. Mok -“Endoscopic classification of representations of quasi-split unitary groups”, Mem. Amer. Math. Soc. 235 (2015), no. 1108, p. vi+248. · Zbl 1316.22018
[27] D. Prasad -“Trilinear forms for representations of GL(2) and local -factors”, Compositio Math. 75 (1990), no. 1, p. 1-46. · Zbl 0731.22013
[28] V. Sécherre -“Supercuspidal representations of GL n (F) distinguished by a Galois involution”, Algebra Number Theory 13 (2019), no. 7, p. 1677-1733. · Zbl 1432.22019
[29] M.-F. Vignéras -Représentations l-modulaires d’un groupe réductif p-adique avec l = p, Progress in Mathematics, vol. 137, Birkhäuser Boston, Inc., Boston, MA, 1996. · Zbl 0859.22001
[30] , “Integral Kirillov model”, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), no. 4, p. 411-416. · Zbl 0909.22033
[31] M.-F. Vignéras -“On highest Whittaker models and integral struc-tures”, in Contributions to automorphic forms, geometry, and number the-ory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, p. 773-801. · Zbl 1084.11023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.