×

Numerical analysis of a self-similar turbulent flow in Bose-Einstein condensates. (English) Zbl 1476.35208

Summary: We study a self-similar solution of the kinetic equation describing weak wave turbulence in Bose-Einstein condensates. This solution presumably corresponds to an asymptotic behavior of a spectrum evolving from a broad class of initial data, and it features a non-equilibrium finite-time condensation of the wave spectrum \(n(\omega)\) at the zero frequency \(\omega\). The self-similar solution is of the second kind, and it satisfies boundary conditions corresponding to a nonzero constant spectrum (with all its derivative being zero) at \(\omega=0\) and a power-law asymptotic \(n(\omega)\to\omega^{-x}\) at \(\omega\to\infty x\in\mathbb{R}^+\). Finding it amounts to solving a nonlinear eigenvalue problem, i.e. finding the value \(x^*\) of the exponent \(x\) for which these two boundary conditions can be satisfied simultaneously. To solve this problem we develop a new high-precision algorithm based on Chebyshev approximations and double exponential formulas for evaluating the collision integral, as well as the iterative techniques for solving the integro-differential equation for the self-similar shape function. This procedures allow to achieve a solution with accuracy \(\approx 4.7\%\) which is realized for \(x^*\approx 1.22\).

MSC:

35Q35 PDEs in connection with fluid mechanics
76F55 Statistical turbulence modeling
35C06 Self-similar solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs
41A50 Best approximation, Chebyshev systems
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
35R09 Integro-partial differential equations
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs

Software:

Clenshaw-Curtis

References:

[1] Dyachenko, S.; Newell, A.; Pushkarev, A.; Zakharov, V., Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation, Physica D, 57, 1-2, 96-160 (1992) · Zbl 0767.35082
[2] Nazarenko, S., Wave turbulence, vol. 825 (2011), Springer Science & Business Media · Zbl 1220.76006
[3] Semikoz, D.; Tkachev, I. I., Kinetics of Bose condensation, Phys Rev Lett, 74, 16, 3093 (1995)
[4] Semikoz, D.; Tkachev, I. I., Condensation of bosons in the kinetic regime, Phys Rev D, 55, 2, 489 (1997)
[5] Lacaze, R.; Lallemand, P.; Pomeau, Y.; Rica, S., Dynamical formation of a Bose-Einstein condensate, Physica D, 152, 779-786 (2001) · Zbl 0979.83028
[6] Connaughton, C.; Pomeau, Y., Kinetic theory and Bose-Einstein condensation, C R Phys, 5, 1, 91-106 (2004)
[7] Zel’dovich, Y. B.; Raizer, Y. P., Physics of shock waves and high-temperature hydrodynamic phenomena (2002), Courier Corporation
[8] Galtier, S.; Nazarenko, S.; Newell, A.; Pouquet, A., A weak turbulence theory for incompressible magnetohydrodynamics, J Plasma Phys, 63, 5, 447-488 (2000)
[9] Connaughton, C.; Newell, A. C., Dynamical scaling and the finite-capacity anomaly in three-wave turbulence, Phys Rev E, 81, 3, 036303 (2010)
[10] Connaughton, C.; Nazarenko, S., Warm cascades and anomalous scaling in a diffusion model of turbulence, Phys Rev Lett, 92, 4, 044501 (2004)
[11] Connaughton, C.; Newell, A. C.; Pomeau, Y., Non-stationary spectra of local wave turbulence, Phys D, 184, 1-4, 64-85 (2003) · Zbl 1098.76514
[12] Grebenev, V.; Nazarenko, S.; Medvedev, S.; Schwab, I.; Chirkunov, Y. A., Self-similar solution in the Leith model of turbulence: anomalous power law and asymptotic analysis, J Phys A, 47, 2, 025501 (2013) · Zbl 1304.35546
[13] Thalabard, S.; Nazarenko, S.; Galtier, S.; Medvedev, S., Anomalous spectral laws in differential models of turbulence, J Phys A, 48, 28, 285501 (2015) · Zbl 1317.76036
[14] Galtier, S.; Nazarenko, S. V.; Buchlin, É.; Thalabard, S., Nonlinear diffusion models for gravitational wave turbulence, Phys D, 390, 84-88 (2019) · Zbl 1448.83006
[15] Bell, N.; Grebenev, V.; Medvedev, S.; Nazarenko, S., Self-similar evolution of Alfven wave turbulence, J Phys A, 50, 43, 435501 (2017) · Zbl 1464.76210
[16] Korotkevich, A.; Pushkarev, A.; Resio, D.; Zakharov, V., Numerical verification of the weak turbulent model for swell evolution, Eur J Mech-B/Fluids, 27, 4, 361-387 (2008) · Zbl 1143.76028
[17] Badulin, S.; Pushkarev, A.; Resio, D.; Zakharov, V., Self-similarity of wind-driven seas, Nonlin Process Geophys, 12, 6, 891-945 (2005)
[18] Badulin, S. I.; Zakharov, V. E., Ocean swell within the kinetic equation for water waves, Nonlin Process Geophys, 24, 2, 237-253 (2017)
[19] Polnikov, V., Nonlinear energy transfer through the spectrum of gravity waves for the finite depth case, J Phys Oceanogr, 27, 8, 1481-1491 (1997)
[20] Janssen, P. A., Nonlinear four-wave interactions and freak waves, J Phys Oceanogr, 33, 4, 863-884 (2003)
[21] Resio, D.; Perrie, W., A numerical study of nonlinear energy fluxes due to wave-wave interactions Part 1. Methodology and basic results, J Fluid Mech, 223, 603-629 (1991) · Zbl 0721.76010
[22] van Vledder, G. P., The WRT method for the computation of non-linear four-wave interactions in discrete spectral wave models, Coastal Eng., 53, 2-3, 223-242 (2006)
[23] Polnikov, V.; Farina, L., On the problem of optimal approximation of the four-wave kinetic integral, Nonlin Process Geophys, 9, 5/6, 497-512 (2002)
[24] Trefethen, L. N., Approximation theory and approximation practice, extended edition (2019), SIAM
[25] Clenshaw, C. W.; Curtis, A. R., A method for numerical integration on an automatic computer, Numer Math, 2, 1, 197-205 (1960) · Zbl 0093.14006
[26] Gentleman, W. M., Implementing Clenshaw-Curtis quadrature, II computing the cosine transformation, Commun ACM, 15, 5, 343-346 (1972) · Zbl 0234.65024
[27] Weideman, J.; Trefethen, L. N., The kink phenomenon in Fejér and Clenshaw-Curtis quadrature, Numer Math, 107, 4, 707-727 (2007) · Zbl 1142.41010
[28] Hossain, M. A.; Islam, M. S., Generalized composite numerical integration rule over a polygon using gaussian quadrature, Dhaka Univ J Sci, 62, 1, 25-29 (2014)
[29] Takahasi, H.; Mori, M., Double exponential formulas for numerical integration, Publ Res InstMath Sci, 9, 3, 721-741 (1974) · Zbl 0293.65011
[30] Ralston, A.; Rabinowitz, P., A first course in numerical analysis (2001), Courier Corporation · Zbl 0976.65001
[31] Blokhin, A.; Ibragimova, A., Numerical method for 2D simulation of a silicon MESFET with a hydrodynamical model based on the maximum entropy principle, SIAM J Sci Comput, 31, 3, 2015-2046 (2009) · Zbl 1190.82047
[32] Salzer, H. E., Lagrangian interpolation at the Chebyshev points xn, \( \nu\equiv\) cos \(( \nu\pi \)/n), \( \nu = 0 (1)\) n; some unnoted advantages, Comput J, 15, 2, 156-159 (1972) · Zbl 0242.65007
[33] Tee, T. W.; Trefethen, L. N., A rational spectral collocation method with adaptively transformed Chebyshev grid points, SIAM J Sci Comput, 28, 5, 1798-1811 (2006) · Zbl 1123.65105
[34] Escobedo, M.; Velázquez, J., On the blow up and condensation of supercritical solutions of the Nordheim equation for bosons, Commun Math Phys, 330, 1, 331-365 (2014) · Zbl 1294.35166
[35] Galtier, S.; Nazarenko, S. V., Turbulence of weak gravitational waves in the early universe, Phys Rev Lett, 119, 22, 221101 (2017)
[36] Skipp, J.; L’vov, V.; Nazarenko, S., Wave turbulence in self-gravitating Bose gases and nonlocal nonlinear optics, Phys Rev A, 102, 4, 043318 (2020)
[37] Bernstein, S., On the best approximation of continuous functions by polynomials of a given degree, Comm Soc Math Kharkow Ser, 2, 13, 49-194 (1912)
[38] Gottlieb, D.; Hussaini, M.; Orszag, S., Theory and applications of spectral methods in spectral methods for partial differential equations, (Voigt, R.; Gottlieb, D.; Hussaini, M. Y. (1984), SIAM: SIAM Philadelphia)
[39] Semisalov, B. V., Non-local algorithm of finding solution to the poisson equation and its applications, Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 54, 7, 1110-1135 (2014) · Zbl 1313.35237
[40] Babenko, K., Fundamentals of numerical analysis, Moscow-Izhevsk: Regular and Chaotic Dynamics (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.