×

A numerical study of nonlinear energy fluxes due to wave-wave interactions. I: Methodology and basic results. (English) Zbl 0721.76010

Summary: Nonlinear transfer due to wave-wave interactions was first described by the Boltzmann integrals of K. Hasselmann [ibid. 12, 481-500 (1962; Zbl 0107.214)] and has been the subject of modelling ever since. We present an economical method to evaluate the complete integral, which uses selected scaling properties and symmetries of the nonlinear energy transfer integrals to construct the integration grid. An important aspect of this integration is the inherent smoothness and stability of the computed nonlinear energy transfer. Energy fluxes associated with the nonlinear energy transfers and their behaviour within the equilibrium range are investigated with respect to high-frequency power law, peak frequency, peakedness, spectral sharpness and angular spreading. We also compute the time evolution of the spectral energy and the nonlinear energy transfers in the absence of energy input by wind or dissipated by wave breaking. The response of nonlinear iterations to perturbations is given and a formulation of relaxation time in the equilibrium range is suggested in terms of total equilibrium range energy and the nonlinear energy fluxes within the equilibrium range.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76M25 Other numerical methods (fluid mechanics) (MSC2010)

Citations:

Zbl 0107.214
Full Text: DOI

References:

[1] DOI: 10.1175/1520-0485(1981)011 2.0.CO;2 · doi:10.1175/1520-0485(1981)011 2.0.CO;2
[2] DOI: 10.1017/S0022112085002221 · Zbl 0603.76013 · doi:10.1017/S0022112085002221
[3] DOI: 10.1175/1520-0485(1975)005 2.0.CO;2 · doi:10.1175/1520-0485(1975)005 2.0.CO;2
[4] DOI: 10.1017/S002211206300032X · Zbl 0126.23202 · doi:10.1017/S002211206300032X
[5] DOI: 10.1017/S0022112063000239 · Zbl 0116.43401 · doi:10.1017/S0022112063000239
[6] DOI: 10.1017/S0022112062000373 · Zbl 0107.21402 · doi:10.1017/S0022112062000373
[7] DOI: 10.1175/1520-0485(1980)010 2.0.CO;2 · doi:10.1175/1520-0485(1980)010 2.0.CO;2
[8] Fox, Proc. R. Soc. 348 pp 467– (1976)
[9] DOI: 10.1007/BF02225707 · doi:10.1007/BF02225707
[10] Donelan, Phil. Trans. R. Soc. Lond. A 315 pp 509– (1985)
[11] Barnett, J. Geophys. Res. 73 pp 6879– (1968)
[12] Barnett, J. Geophys. Res. 73 pp 513– (1968)
[13] Masada, J. Phys. Oceanogr. 15 pp 1369– (1980)
[14] Longuet-Higglns, Proc. R. Soc. A 347 pp 311– (1976) · Zbl 0323.76014 · doi:10.1098/rspa.1976.0003
[15] DOI: 10.1175/1520-0485(1984)014 2.0.CO;2 · doi:10.1175/1520-0485(1984)014 2.0.CO;2
[16] DOI: 10.1175/1520-0485(1983)013 2.0.CO;2 · doi:10.1175/1520-0485(1983)013 2.0.CO;2
[17] Hasselmann, J. Phys. Oceanogr. 18 pp 1775– (1989)
[18] DOI: 10.1175/1520-0485(1985)015 2.0.CO;2 · doi:10.1175/1520-0485(1985)015 2.0.CO;2
[19] DOI: 10.1175/1520-0485(1985)015 2.0.CO;2 · doi:10.1175/1520-0485(1985)015 2.0.CO;2
[20] Hasselmann, Hamburger Geophys. Einzelschr. 52 pp 163– (1981)
[21] DOI: 10.1175/1520-0485(1976)006 2.0.CO;2 · doi:10.1175/1520-0485(1976)006 2.0.CO;2
[22] Hasselmann, Z. Suppl. Ser. A (8) 15 pp 385– (1973)
[23] Zakharov, Akad. Nauk SSSR 160 pp 1292– (1966)
[24] DOI: 10.1016/0146-6291(78)90593-3 · doi:10.1016/0146-6291(78)90593-3
[25] DOI: 10.1175/1520-0485(1988)018 2.0.CO;2 · doi:10.1175/1520-0485(1988)018 2.0.CO;2
[26] Sell, Rep. Inst. Geophys. University of Hamburg 19 pp 193– (1972)
[27] DOI: 10.1175/1520-0485(1989)019 2.0.CO;2 · doi:10.1175/1520-0485(1989)019 2.0.CO;2
[28] Resio, J. Waterway Port, Ocean Engng 113 pp 264– (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.