×

On fractional Lévy processes: tempering, sample path properties and stochastic integration. (English) Zbl 1447.60069

Summary: We define two new classes of stochastic processes, called tempered fractional Lévy process of the first and second kinds (TFLP and TFLP II, respectively). TFLP and TFLP II make up very broad finite-variance, generally non-Gaussian families of transient anomalous diffusion models that are constructed by exponentially tempering the power law kernel in the moving average representation of a fractional Lévy process. Accordingly, the increment processes of TFLP and TFLP II display semi-long range dependence. We establish the sample path properties of TFLP and TFLP II. We further use a flexible framework of tempered fractional derivatives and integrals to develop the theory of stochastic integration with respect to TFLP and TFLP II, which may not be semimartingales depending on the value of the memory parameter and choice of marginal distribution.

MSC:

60G22 Fractional processes, including fractional Brownian motion
60G51 Processes with independent increments; Lévy processes
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
60H05 Stochastic integrals
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60F05 Central limit and other weak theorems

References:

[1] Giraitis, L.; Kokoszka, P.; Leipus, R., Stationary ARCH models: dependence structure and central limit theorem, Econom. Theory, 16, 1, 3-22 (2000) · Zbl 0986.60030
[2] Mandelbrot, B.; Van Ness, J., Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 4, 422-437 (1968) · Zbl 0179.47801
[3] Ciuciu, P.; Abry, P.; He, B., Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks, Neuroimage, 95, 248-263 (2014)
[4] Foufoula-Georgiou, E.; Kumar, P., Wavelets in Geophysics (2014), Cambridge: Academic Press, Cambridge
[5] Ivanov, P.; Nunes Amaral, L.; Goldberger, A.; Havlin, S.; Rosenblum, M.; Struzik, Z.; Stanley, H., Multifractality in human heartbeat dynamics, Nature, 399, 6735, 461-465 (1999)
[6] Mandelbrot, B., Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, J. Fluid Mech., 62, 331-358 (1974) · Zbl 0289.76031
[7] Taqqu, M.; Willinger, W.; Sherman, R., Proof of a fundamental result in self-similar traffic modeling, ACM SIGCOMM Comput. Commun. Rev., 27, 2, 5-23 (1997)
[8] Flandrin, P., Wavelet analysis and synthesis of fractional brownian motion, IEEE Trans. Inf. Theory, 38, 910-917 (1992) · Zbl 0743.60078
[9] Wornell, G.; Oppenheim, A., Estimation of fractal signals from noisy measurements using wavelets, IEEE Trans. Signal Process., 40, 3, 611-623 (1992)
[10] Embrechts, P.; Maejima, M., Selfsimilar Processes (2002), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1008.60003
[11] Pipiras, V.; Taqqu, Ms, Long-Range Dependence and Self-similarity (2017), Cambridge: Cambridge University Press, Cambridge · Zbl 1377.60005
[12] Beran, J.; Feng, Y.; Ghosh, S.; Kulik, R., Long Memory Processes: Probabilistic Properties and Statistical Models (2013), Heidelberg: Springer, Heidelberg · Zbl 1282.62187
[13] Dobrushin, R.; Major, P., Non-central limit theorems for non-linear functional of Gaussian fields, Probab. Theory Relat. Fields, 50, 1, 27-52 (1979) · Zbl 0397.60034
[14] Granger, C.; Joyeux, R., An introduction to long-memory time series models and fractional differencing, J. Time Ser. Anal., 1, 1, 15-29 (1980) · Zbl 0503.62079
[15] Moulines, E.; Roueff, F.; Taqqu, M., A wavelet Whittle estimator of the memory parameter of a nonstationary Gaussian time series, Ann. Stat., 36, 1925-1956 (2008) · Zbl 1142.62062
[16] Taqqu, Ms, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Probab. Theory Relat. Fields, 31, 4, 287-302 (1975) · Zbl 0303.60033
[17] Taqqu, Ms, Convergence of integrated processes of arbitrary Hermite rank, Probab. Theory Relat. Fields, 50, 1, 53-83 (1979) · Zbl 0397.60028
[18] Samorodnitsky, G.; Taqqu, M., Stable non-Gaussian random processes (1994), New York: Chapman and Hall, New York · Zbl 0925.60027
[19] Bardet, J-M; Tudor, C., Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process, J. Multivar. Anal., 131, 1-16 (2014) · Zbl 1298.60045
[20] Clausel, M.; Roueff, F.; Taqqu, Ms; Tudor, C., Wavelet estimation of the long memory parameter for Hermite polynomial of Gaussian processes, ESAIM: Probab. Stat., 18, 42-76 (2014) · Zbl 1310.42023
[21] Kolmogorov, An, The Wiener spiral and some other interesting curves in Hilbert space, Dokl. Akad. Nauk SSSR, 26, 115-118 (1940)
[22] Kolmogorov, An, The local structure of turbulence in an incompressible fluid at very high Reynolds numbers, Dokl. Akad. Nauk SSSR, 30, 299-303 (1941)
[23] Friedlander, Sk; Topper, L., Turbulence: Classic Papers on Statistical Theory (1961), Geneva: Interscience Publishers, Geneva · Zbl 0098.40902
[24] Shiryaev, An, Kolmogorov and the Turbulence (1999), Aarhus: Centre for Mathematical Physics and Stochastics, University of Aarhus, Aarhus
[25] Von Kármán, T., Progress in the statistical theory of turbulence, Proc. Natl. Acad. Sci. USA, 34, 11, 530 (1948) · Zbl 0032.22601
[26] U.S. Department of Defense: Flying qualities of piloted aircraft, military standard MIL-STD-1797A (2004)
[27] Penner, S.; Williams, F.; Libby, P.; Nemat-Nasser, S., Von Kármán’s work: the later years (1952 to 1963) and legacy, Ann. Rev. Fluid Mech., 41, 1-15 (2009) · Zbl 1157.01318
[28] Beaupuits, Jp; Otárola, A.; Rantakyrö, F.; Rivera, R.; Radford, S.; Nyman, L., Analysis of Wind Data Gathered at Chajnantor, 1-20 (2004), Charlottesville: National Radio Astronomy Observatory, Charlottesville
[29] Jang, J-J; Guo, J-S, Analysis of maximum wind force for offshore structure design, J. Mar. Sci. Technol., 7, 1, 43-51 (1999)
[30] Norton, D.J., Wolff, C.V., et al.: Mobile offshore platform wind loads. In: Offshore Technology Conference. Offshore Technology Conference (1981)
[31] Davenport, A., The spectrum of horizontal gustiness near the ground in high winds, Q. J. R. Meteorol. Soc., 87, 372, 194-211 (1961)
[32] Norton, D., Wolff, C.: Mobile offshore platform wind loads. In: Offshore Technology Conference. Offshore Technology Conference (1981)
[33] Li, Y.; Kareem, A., ARMA systems in wind engineering, Probab. Eng. Mech., 5, 2, 49-59 (1990)
[34] Beaupuits, J.; Otárola, A.; Rantakyrö, Ft; Rivera, Rc; Radford, Sje; Nyman, L., Analysis of Wind Data Gathered at Chajnantor (2004), Charlottesville: National Radio Astronomy Observatory, Charlottesville
[35] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1, 1-77 (2000) · Zbl 0984.82032
[36] Kou, S., Stochastic modeling in nanoscale biophysics: subdiffusion within proteins, Ann. Appl. Stat., 2, 501-535 (2008) · Zbl 1400.62272
[37] Sokolov, I., Statistics and the single molecule, Physics, 1, 8 (2008)
[38] Didier, G.; Mckinley, Sa; Hill, Db; Fricks, J., Statistical challenges in microrheology, J. Time Ser. Anal., 33, 5, 724-743 (2012) · Zbl 1282.62232
[39] Grebenkov, Ds; Vahabi, M.; Bertseva, E.; Forró, L.; Jeney, S., Hydrodynamic and subdiffusive motion of tracers in a viscoelastic medium, Phys. Rev. E, 88, 4, 040701 (2013)
[40] Zhang, K.; Crizer, K.; Schoenfisch, Mh; Hill, Db; Didier, G., Fluid heterogeneity detection based on the asymptotic distribution of the time-averaged mean squared displacement in single particle tracking experiments, J. Phys. A, 51, 445601 (2018) · Zbl 1407.76010
[41] Piryatinska, A.; Sanchev, A.; Woyczynski, Wa, Models of anomalous diffusion: the subdiffusive case, Physica A, 349, 375-420 (2005)
[42] Stanislavsky, A.; Weron, K.; Weron, A., Diffusion and relaxation controlled by tempered \(\alpha \)-stable processes, Phys. Rev. E, 78, 5, 051106 (2008)
[43] Baeumer, B.; Meerschaert, Mm, Tempered stable Lévy motion and transient super-diffusion, J. Comput. Appl. Math., 233, 10, 2438-2448 (2010) · Zbl 1423.60079
[44] Sandev, T.; Chechkin, A.; Kantz, H.; Metzler, R., Diffusion and Fokker-Planck-Smoluchowski equations with generalized memory kernel, Fract. Calc. Appl. Anal., 18, 4, 1006-1038 (2015) · Zbl 1338.60199
[45] Wu, X.; Deng, W.; Barkai, E., Tempered fractional Feynman-Kac equation: theory and examples, Phys. Rev. E, 93, 3, 032151 (2016)
[46] Chen, Y.; Wang, X.; Deng, W., Localization and ballistic diffusion for the tempered fractional Brownian-Langevin motion, J. Stat. Phys., 169, 18-37 (2017) · Zbl 1397.82042
[47] Liemert, A.; Sandev, T.; Kantz, H., Generalized Langevin equation with tempered memory kernel, Physica A, 466, 356-369 (2017) · Zbl 1400.82195
[48] Chen, Y.; Wang, X.; Deng, W., Resonant behavior of the generalized Langevin system with tempered Mittag-Leffler memory kernel, J. Phys. A, 51, 18, 185201 (2018) · Zbl 1392.82044
[49] Saxton, Mj, A biological interpretation of transient anomalous subdiffusion. I. Qualitative model, Biophys. J., 92, 4, 1178-1191 (2007)
[50] Molina-Garcia, D.; Sandev, T.; Safdari, H.; Pagnini, G.; Chechkin, A.; Metzler, R., Crossover from anomalous to normal diffusion: truncated power-law noise correlations and applications to dynamics in lipid bilayers, New J. Phys., 20, 10, 103027 (2018)
[51] Taylor, Gi, Diffusion by continuous movements, Proc. Lond. Math. Soc., s2-20, 1, 196-212 (1922) · JFM 48.0961.01
[52] Xia, H.; Francois, N.; Punzmann, H.; Shats, M., Lagrangian scale of particle dispersion in turbulence, Nat. Commun., 4, 1-8 (2013)
[53] Boniece, B.C., Didier, G., Sabzikar, F.: Tempered fractional Brownian motion: wavelet estimation, modeling and testing. To appear in Appl. Comput. Harmon. Anal. 1-51 (2019) · Zbl 1461.62152
[54] Meerschaert, M.; Sabzikar, F., Tempered fractional Brownian motion, Stat. Probab. Lett., 83, 10, 2269-2275 (2013) · Zbl 1287.60050
[55] Sabzikar, F.; Surgailis, D., Tempered fractional Brownian and stable motions of second kind, Stat. Probab. Lett., 132, 17-27 (2018) · Zbl 1380.60047
[56] Meerschaert, Mm; Zhang, Y.; Baeumer, B., Tempered anomalous diffusion in heterogeneous systems, Geophys. Res. Lett., 35, 17 (2008)
[57] Meerschaert, M.; Sabzikar, F.; Phanikumar, M.; Zeleke, A., Tempered fractional time series model for turbulence in geophysical flows, J. Stat. Mech. Theory Exp., 2014, 9, P09023 (2014)
[58] Fricks, J.; Yao, L.; Elston, T.; Forest, Mg, Time-domain methods for diffusive transport in soft matter, SIAM J. Appl. Math., 69, 5, 1277-1308 (2009) · Zbl 1186.62113
[59] Francois, N.; Xia, H.; Punzmann, H.; Combriat, T.; Shats, M., Inhibition of wave-driven two-dimensional turbulence by viscoelastic films of proteins, Phys. Rev. E, 92, 023027 (2015)
[60] Xia, H.; Francois, N.; Punzmann, H.; Shats, M., Taylor particle dispersion during transition to fully developed two-dimensional turbulence, Phys. Rev. Lett., 112, 104501 (2014)
[61] Meerschaert, M.; Sabzikar, F., Stochastic integration with respect to tempered fractional Brownian motion, Stoch. Process. Appl., 124, 7, 2363-2387 (2014) · Zbl 1329.60166
[62] Zeng, C.; Yang, Q.; Chen, Y., Bifurcation dynamics of the tempered fractional Langevin equation, Chaos, 26, 8, 084310 (2016) · Zbl 1378.60066
[63] Boniece, B.C., Sabzikar, F., Didier, G.: Tempered fractional Brownian motion: wavelet estimation and modeling of geophysical flows. In: IEEE Statistical Signal Processing Workshop—Freiburg, Germany. IEEE, pp. 1-5 (2018) · Zbl 1461.62152
[64] Barndorff-Nielsen, O., Exponentially decreasing distributions for the logarithm of particle size, Proc. R. Soc. Lond. A, 353, 1674, 401-419 (1977)
[65] Barndorff-Nielsen, O., Models for non-Gaussian variation, with applications to turbulence, Proc. R. Soc. Lond. A, 368, 1735, 501-520 (1979) · Zbl 0418.60022
[66] Barndorff-Nielsen, O.; Jensen, Jl; Sørensen, M., Wind shear and hyperbolic distributions, Bound. Layer Meteorol., 49, 4, 417-431 (1989)
[67] Barndorff-Nielsen, O.; Jensen, Jl; Sørensen, M., Parametric modelling of turbulence, Philos. Trans. R. Soc. Lond. A, 332, 1627, 439-455 (1990)
[68] Barndorff-Nielsen, O.; Jensen, Jl; Sørensen, M., A statistical model for the streamwise component of a turbulent velocity field, Ann. Geophys., 11, 99-103 (1993)
[69] Skyum, P.; Christiansen, C.; Blaesild, P., Hyperbolic distributed wind, sea-level and wave data, J. Coast. Res., 6, 883-889 (1996)
[70] Barndorff-Nielsen, O., Normal inverse Gaussian distributions and stochastic volatility modelling, Scand. J. Stat., 24, 1, 1-13 (1997) · Zbl 0934.62109
[71] Sabzikar, F., Tempered Hermite process, Mod. Stoch. Theory Appl., 2, 327-341 (2015) · Zbl 1352.60035
[72] Rosiński, J., Tempering stable processes, Stoch. Process. Appl., 117, 6, 677-707 (2007) · Zbl 1118.60037
[73] Bianchi, Michele Leonardo; Rachev, Svetlozar T.; Kim, Young Shin; Fabozzi, Frank J., Tempered stable distributions and processes in finance: numerical analysis, Mathematical and Statistical Methods for Actuarial Sciences and Finance, 33-42 (2010), Milano: Springer Milan, Milano
[74] Gajda, J.; Magdziarz, M., Fractional Fokker-Planck equation with tempered \(\alpha \)-stable waiting times: Langevin picture and computer simulation, Phys. Rev. E, 82, 011117 (2010)
[75] Rosiński, J.; Sinclair, J., Generalized tempered stable processes, Stabil. Probab., 90, 153-170 (2010) · Zbl 1210.60048
[76] Kawai, R.; Masuda, H., Infinite variation tempered stable Ornstein-Uhlenbeck processes with discrete observations, Commun. Stat. Simul. Comput., 41, 1, 125-139 (2012) · Zbl 1489.62261
[77] Küchler, U.; Tappe, S., Tempered stable distributions and processes, Stoch. Process. Appl., 123, 12, 4256-4293 (2013) · Zbl 1352.60021
[78] Mantegna, Rn; Stanley, He, Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight, Phys. Rev. Lett., 73, 22, 2946 (1994) · Zbl 1020.82610
[79] Chechkin, Av; Gonchar, Vy; Klafter, J.; Metzler, R., Natural cutoff in Lévy flights caused by dissipative nonlinearity, Phys. Rev. E, 72, 1, 010101 (2005)
[80] Benassi, A.; Cohen, S.; Istas, J., Identification and properties of real harmonizable fractional Lévy motions, Bernoulli, 8, 1, 97-115 (2002) · Zbl 1005.60052
[81] Brockwell, Pj; Marquardt, T., Lévy-driven and fractionally integrated ARMA processes with continuous time parameter, Stat. Sin., 15, 477-494 (2005) · Zbl 1070.62068
[82] Marquardt, T., Fractional Lévy processes with an application to long memory moving average processes, Bernoulli, 12, 6, 1099-1126 (2006) · Zbl 1126.60038
[83] Lacaux, C.; Loubes, J-M, Hurst exponent estimation of fractional Lévy motion, ALEA: Latin Am. J. Probab. Math. Stat., 3, 143-164 (2007) · Zbl 1126.62071
[84] Bender, C.; Marquardt, T., Stochastic calculus for convoluted Lévy processes, Bernoulli, 14, 2, 499-518 (2008) · Zbl 1173.60017
[85] Barndorff-Nielsen, Ole E.; Schmiegel, Jürgen, Time Change, Volatility, and Turbulence, Mathematical Control Theory and Finance, 29-53 (2008), Berlin, Heidelberg: Springer Berlin Heidelberg, Berlin, Heidelberg · Zbl 1157.60043
[86] Suciu, N., Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields, Phys. Rev. E, 81, 5, 056301 (2010)
[87] Magdziarz, M.; Weron, A., Ergodic properties of anomalous diffusion processes, Ann. Phys., 326, 9, 2431-2443 (2011) · Zbl 1227.82058
[88] Zhang, S.; Lin, Z.; Zhang, X., A least squares estimator for Lévy-driven moving averages based on discrete time observations, Commun. Stat. Theory Methods, 44, 6, 1111-1129 (2015) · Zbl 1328.62512
[89] Xu, Y.; Li, Y.; Zhang, H.; Li, X.; Kurths, J., The switch in a genetic toggle system with Lévy noise, Sci. Rep., 6, 31505 (2016)
[90] Fink, H., Conditional distributions of Mandelbrot-Van Ness fractional Lévy processes and continuous-time ARMA-GARCH-type models with long memory, J. Time Ser. Anal., 37, 1, 30-45 (2016) · Zbl 1335.62131
[91] Bender, C.; Knobloch, R.; Oberacker, P., Maximal inequalities for fractional Lévy and related processes, Stoch. Anal. Appl., 33, 4, 701-714 (2015) · Zbl 1325.60052
[92] Chevillard, L., Regularized fractional Ornstein-Uhlenbeck processes and their relevance to the modeling of fluid turbulence, Phys. Rev. E, 96, 033111 (2017)
[93] Pipiras, V.; Taqqu, Ms, Integration questions related to fractional Brownian motion, Probab. Theory Relat. Fields, 118, 2, 251-291 (2000) · Zbl 0970.60058
[94] Meerschaert, Mm; Sikorskii, A., Stoch. Models Fract. Calc. (2011), Berlin: Walter de Gruyter, Berlin
[95] Oldham, K.; Spanier, J., The Fractional Calculus (1974), New York: Academic Press, New York · Zbl 0428.26004
[96] Samko, Sg; Kilbas, Aa; Marichev, Oi, Fractional Integrals and Derivatives: Theory and Applications (1993), Boca Raton: CRC Press, Boca Raton · Zbl 0818.26003
[97] Cartea, Á.; Del Castillo-Negrete, D., Fluid limit of the continuous-time random walk with general Lévy jump distribution functions, Phys. Rev. E, 76, 4, 041105 (2007)
[98] Rozanov, Ya, Stationary Random Processes (1967), San Francisco: Holden-Day, San Francisco · Zbl 0152.16302
[99] Sato, K-I; Ken-Iti, S., Lévy Processes and Infinitely Divisible Distributions (1999), Cambridge: Cambridge University Press, Cambridge · Zbl 0973.60001
[100] Rajput, Bs; Rosinski, J., Spectral representations of infinitely divisible processes, Probab. Theory Relat. Fields, 82, 3, 451-487 (1989) · Zbl 0659.60078
[101] Klüppelberg, C.; Matsui, M., Generalized fractional Lévy processes with fractional Brownian motion limit, Adv. Appl. Probab., 47, 4, 1108-1131 (2015) · Zbl 1333.60074
[102] Barndorff-Nielsen, J.; Schmiegel, Oe, Brownian semistationary processes and volatility/intermittency, Radon Ser. Comput. Appl. Math., 8, 1-26 (2009) · Zbl 1195.60053
[103] Barndorff-Nielsen, Oe, Assessing gamma kernels and BSS/LSS processes, CREATES Res. Pap., 2016-9, 1-17 (2016) · Zbl 1369.60039
[104] Marquardt, T.M.: Fractional Lévy Processes, CARMA Processes and Related Topics. PhD thesis, Technische Universität München (2006)
[105] Karatzas, I.; Shreve, S., Brownian Motion and Stochastic Calculus (2012), New York: Springer, New York
[106] Kallenberg, O., Foundations of Modern Probability (2006), New York: Springer, New York
[107] Sabzikar, F., Wang, Q., Phillips, P.C.: Asymptotic theory for near integrated process driven by tempered linear process. Submitted (2019)
[108] Rosinski, J., On path properties of certain infinitely divisible processes, Stoch. Process. Appl., 33, 1, 73-87 (1989) · Zbl 0715.60051
[109] Gradshteyn, Is; Ryzhik, Im, Table of Integrals, Series, and Products (2007), New York: Academic Press, New York · Zbl 1208.65001
[110] Basse, A.; Pedersen, J., Lévy driven moving averages and semimartingales, Stoch. Process. Appl., 119, 9, 2970-2991 (2009) · Zbl 1175.60040
[111] Cheridito, P., Gaussian moving averages, semimartingales and option pricing, Stoch. Process. Appl., 109, 1, 47-68 (2004) · Zbl 1075.60025
[112] Protter, P.E.: Stochastic differential equations. In: Stochastic Integration and Differential Equations. Springer, New York (2003) · Zbl 1025.60026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.