×

Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process. (English) Zbl 1298.60045

Summary: The purpose of this paper is the estimation of the self-similarity index of the Rosenblatt process by using the Whittle estimator. Via chaos expansion into multiple stochastic integrals, we establish a non-central limit theorem satisfied by this estimator. We illustrate our results by numerical simulations.

MSC:

60G18 Self-similar stochastic processes
60F05 Central limit and other weak theorems
60H05 Stochastic integrals
62F12 Asymptotic properties of parametric estimators

Software:

longmemo

References:

[1] Abadir, K. M.; Distaso, W.; Giraitis, L., Nonstationarity-extended local Whittle estimation, J. Econometrics, 141, 1353-1384 (2007) · Zbl 1418.62297
[2] Abry, P.; Pipiras, V., Wavelet-based synthesis of the Rosenblatt process, Signal Process., 86, 2326-2339 (2006) · Zbl 1172.94348
[3] Bardet, J.-M.; Tudor, C. A., A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter, Stochastic Process. Appl., 120, 2331-2362 (2010) · Zbl 1203.60043
[4] Beran, J., Statistics for Long-Memory Processes (1994), Chapman and Hall · Zbl 0869.60045
[5] Breuer, P.; Major, P., Central limit theorems for nonlinear functionals of Gaussian fields, J. Multivariate Anal., 13, 425-441 (1983) · Zbl 0518.60023
[6] Chronopoulou, A.; Tudor, C. A.; Viens, F., Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes, Commun. Stoch. Anal., 5, 161-185 (2008) · Zbl 1331.62098
[7] Dahlhaus, R., Efficient parameter estimation for self-similar processes, Ann. Statist., 17, 1749-1766 (1989) · Zbl 0703.62091
[8] Dobrushin, R. L.; Major, P., Non-central limit theorems for non-linear functionals of Gaussian fields, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 50, 27-52 (1979) · Zbl 0397.60034
[9] Doob, J. L., Stochastic Processes (1953), Wiley · Zbl 0053.26802
[10] (Doukhan, P.; Oppenheim, G.; Taqqu, M. S., Theory and Applications of Long-Range Dependence (2003), Birkhäuser) · Zbl 1005.00017
[11] Fox, R.; Taqqu, M. S., Large-sample properties of parameter estimates for strongly dependent Gaussian time series, Ann. Statist., 14, 517-532 (1986) · Zbl 0606.62096
[12] Fox, R.; Taqqu, M. S., Multiple stochastic integrals with dependent integrators, J. Multivariate Anal., 21, 105-127 (1987) · Zbl 0649.60064
[13] Giraitis, L.; Surgailis, D., A central limit theorem for quadratic forms in strongly dependent linear variables and its applications to the asymptotic normality of Whittle estimate, Probab. Theory Related Fields, 86, 87-104 (1990) · Zbl 0717.62015
[14] Giraitis, L.; Taqqu, M. S., Whittle estimator for finite-variance non-Gaussian time series with long memory, Ann. Statist., 27, 178-203 (1999) · Zbl 0945.62085
[15] Lawrance, A. J.; Kottegoda, N. T., Stochastic modelling of riverflow time series, J. R. Stat. Soc. Ser. A, 140, 1-47 (1977)
[16] Nourdin, I.; Nualart, D.; Tudor, C. A., Central and Non-Central Limit Theorems for weighted power variations of the fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist., 46, 1055-1079 (2007) · Zbl 1221.60031
[17] Nourdin, I.; Peccati, G., Normal Approximations with Malliavin Calculus From Stein’s Method to Universality (2012), Cambridge University Press · Zbl 1266.60001
[18] Nualart, D., Malliavin Calculus and Related Topics (2006), Springer · Zbl 1099.60003
[19] Pipiras, V.; Taqqu, M., Regularization and integral representations of Hermite processes, Statist. Probab. Lett., 80, 2014-2023 (2010) · Zbl 1216.60029
[20] Robinson, P. M., Gaussian semiparametric estimation of long range dependence, Ann. Statist., 23, 1630-1661 (1995) · Zbl 0843.62092
[21] Sinai, Y. G., Self-similar probability distributions, Theory Probab. Appl., 21, 64-80 (1976) · Zbl 0358.60031
[22] Taqqu, M. S., Weak convergence to the fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 31, 287-302 (1975) · Zbl 0303.60033
[23] Taqqu, M., A representation for self-similar processes, Stochastic Process. Appl., 7, 55-64 (1978) · Zbl 0373.60048
[24] Tudor, C. A., Analysis of the Rosenblatt process, ESAIM Probab. Stat., 12, 230-257 (2008) · Zbl 1187.60028
[25] Tudor, C. A., Analysis of Variations for Self-Similar Processes (2013), Springer: Springer Cham · Zbl 1308.60004
[26] Tudor, C. A.; Viens, F., Variations and estimators for the self-similarity order through Malliavin calculus, Ann. Probab., 37, 2093-2134 (2009) · Zbl 1196.60036
[27] Veillette, M. S.; Taqqu, M. S., Properties and numerical evaluation of the Rosenblatt distribution, Bernoulli, 19, 3, 982-1005 (2013) · Zbl 1273.60020
[28] Whittle, P., Gaussian estimation in stationary time series, Bull. Int. Statist. Inst., 39, 105-129 (1962) · Zbl 0116.11403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.