×

On the effect of fiber creep-compliance in the high-temperature deformation of continuous fiber-reinforced ceramic matrix composites. (English) Zbl 1196.74031

Summary: Creep models for unidirectional ceramic matrix composites reinforced by long creeping fibers with weak interfaces are presented. These models extend the work of Z. Du and R. McMeeking [J. Mech. Phys. Solids 43, No. 5, 701–726 (1995; Zbl 0879.73041)] to include the effect of fiber primary creep present in the required operational temperatures for ceramic matrix composites (CMCs). The effects of fiber breaks and the consequential stress relaxation around the breaks are incorporated in the models under the assumption of global load sharing and time-independent stochastics for fiber failure. From the set of problems analyzed, it is found that the high-temperature deformation of CMCs is sensitive to the creep-compliance of the fibers. High fiber creep-compliance drives the composite to creep faster, leading however to greater lifetimes and greater overall strains at rupture. This behavior is attributed to the fact that the greater the creep-compliance of the fibers, the higher the creep rate but the slower the matrix stress relaxation - since the matrix must deform with a rate compatible with the more creep-resistant fibers - and therefore the less the load carried by the main load-bearing phase, the fibers. As a result, fewer fibers fail and less damage is accumulated in the system. Moreover, the greater the creep-compliance of the fibers, the slower the matrix shear stress relaxation - and thus the lower the levels of applied stress for which this effect becomes important. The slower the shear stress relaxes, the slower the “slip” length increases. Due to the Weibull nature of the fibers, the fiber strengths at the smaller gauge length of the slip length are stronger; therefore fewer fibers undergo damage. Hence, high fiber creep-compliance is desirable (in the absence of any explicit creep-damage mechanism) in terms of composite lifetime but not in terms of overall strain. These results are considered of importance for composite design and optimization.

MSC:

74E30 Composite and mixture properties
74F05 Thermal effects in solid mechanics

Citations:

Zbl 0879.73041
Full Text: DOI

References:

[1] Aboudi, J.: Micromechanics of composite materials: A unified micromechanical approach, (1991) · Zbl 0837.73003
[2] Aboudi, J.: Micromechanical analysis of thermo-inelastic multiphase short-fiber composites, Compos. eng. 5, 839-850 (1995)
[3] Aravas, N.; Cheng, C.; Castaneda, P.: Steady-state creep of fiber-reinforced composites: constitutive equations and computational issues, Int. J. Solids struct. 32, 2219-2244 (1995) · Zbl 0874.73041 · doi:10.1016/0020-7683(94)00251-Q
[4] Baxevanis, Th.; Charalambakis, N.: A micromechanically based model for damage-enhanced creep rupture in continuous fiber-reinforced ceramic matrix composites, Mech. mater. 42, 570-580 (2010)
[5] Bednarcyk, B.; Arnold, S.: Transverse tensile and creep modeling of continuously reinforced titanium composites with local debonding, Int. J. Solids struct. 39, 1987-2017 (2002) · Zbl 1006.74505 · doi:10.1016/S0020-7683(01)00216-5
[6] Boltzmann, Z., 1874. Zur theorie der elastischen nachwirkungen. Sitzungsberichte Akademie der Wissendchaften. In: Wien, Wiener Bericht 70, Wissenschafliche Abhandhungen. 1, pp. 279 – 306.
[7] Casas, L.; Martinez-Esnaola, J.: Modelling the effect of oxidation on the creep behaviour of fibre-reinforced ceramic matrix composites, Acta mater. 51, 3745-3757 (2003)
[8] Cheng, C.; Aravas, N.: Creep of metal matrix composites with elastic fibers – part II: A damage model, Int. J. Solids struct. 34, 4173-4189 (1997) · Zbl 0942.74547 · doi:10.1016/S0020-7683(97)00005-X
[9] Cheng, C.; Aravas, N.: Creep of metal matrix composites with elastic fibers – part I: Continuous aligned fibers, Int. J. Solids struct. 34, 4147-4171 (1997) · Zbl 0942.74547 · doi:10.1016/S0020-7683(97)00005-X
[10] Coleman, B. D.: Statistics and time dependence of mechanical breakdown in fibers, J. appl. Phys. 29, 986 (1958) · Zbl 0082.38103 · doi:10.1063/1.1723343
[11] Curtin, W.: Theory of mechanical properties of ceramic matrix composites, J. am. Ceram. soc. 74, 2837 (1991)
[12] Curtin, W.: Ultimate strengths of fibre-reinforced ceramics and metals, Composites 24, 98-102 (1993)
[13] Dicarlo, J.: Creep of chemically vapour deposited sic fibres, J. mater. Sci. 21, 217-224 (1986)
[14] Dicarlo, J.: Creep limitations of current polycrystalline ceramic fibers, Technol. compos. Sci. 51, 213-222 (1994)
[15] Du, Z.; Mcmeeking, R.: Control of strength anisotropy of metal matrix-fiber composites, J. comput. Aided mater. Des. 1, 243-264 (1994)
[16] Du, Z.; Mcmeeking, R.: Creep models for metal matrix composites with long brittle fibers, J. mech. Phys. solids 43, 701-726 (1995) · Zbl 0879.73041 · doi:10.1016/0022-5096(95)00007-6
[17] Evans, A.; Weber, C.: Creep damage in sic/sic composites, Mater. sci. Eng. A 208, 1-6 (1996)
[18] Evans, A.; Zok, F.; Mcmeeking, R.; Du, Z.: Models of high-temperature, environmentally assisted embrittlement in ceramic matrix composites, J. am. Ceram. soc. 79, 2345 (1996)
[19] Fabeny, B.; Curtin, W.: Damage-enhanced creep and rupture in fiber-reinforced composites, Acta metall. Mater. 44, 3439-3451 (1996)
[20] Halverson, H.; Curtin, W.: Stress rupture in ceramic matrix composites: theory and experiment, J. am. Ceram. soc. 85, 1350 (2002)
[21] Hedgepeth, J.M., 1961. Stress concentrations in filamentary structures. NASA TN D-822.
[22] He, M.; Evans, A.; Curtin, W.: Ultimate tensile strength of metal and ceramic matrix composites, Acta metall. Mater. 41, 871-878 (1993)
[23] Jr, C. Henager; Lewinsohn, C.; Jones, R.: Subcritical crack growth in cvisicf/sic composites at elevated temperatures: effect of fiber creep rate, Acta mater. 49, 3727-3738 (2001)
[24] Holmes, J.; Park, Y.; Jones, J.: Tensile creep and creep-recovery behavior of a sic fiber/si3n4-matrix composite, J. am. Ceram. soc. 76, 1281 (1993)
[25] Hui, C. -Y.; Phoenix, S. L.; Ibnabdeljalil, M.; Dmith, R. L.: An exact closed form solution for fragmentation of Weibull fibers in a single filament composite with applications to fiber-reinforced ceramics, J. mech. Phys. solids 43, 1551-1585 (1995) · Zbl 0920.73297 · doi:10.1016/0022-5096(95)00045-K
[26] Ibnabdeljalil, M.; Phoenix, L.: Creep-rupture of brittle matrix composites reinforced with time-dependent fibers: scalings and Monte Carlo simulations, J. mech. Phys. solids 43, 897-931 (1995) · Zbl 0877.73050 · doi:10.1016/0022-5096(95)00008-7
[27] Iyengar, N.; Curtin, W.: Time-dependent failure in fiber-reinforced composites by fiber degradation, Acta mater. 45, 1489-1502 (1997)
[28] Iyengar, N.; Curtin, W.: Time-dependent failure in fiber-reinforced composites by matrix and interface shear creep, Acta mater. 45, 3419-3429 (1997)
[29] Jansson, S.; Deve, H.; Evans, A.: Anisotropic mechanical properties of a ti matrix composite reinforced with sic fibers, Metall. mater. Trans. A 22 A, 2975-2983 (1994)
[30] Jones, R.; Jr., C. Henager: Subcritical crack growth processes in sic/sic ceramic matrix composites, J. eur. Ceram. soc. 25, 1329-1337 (2005)
[31] Kondo, K.; Kubo, T.; Masuyama, M.: Creep behavior of unidirectional composites, Comput. mech. 14, 16-27 (1994) · Zbl 0802.73040 · doi:10.1007/BF00350154
[32] Kossowsky, B.; Miller, D.; Diaz, E.: Tensile and creep strengths of hot-pressed si3n4, J. mater. Sci. 10, 983-997 (1975)
[33] Lagoudas, D. C.; Hui, C. -Y.; Phoenix, S. L.: Time evolution of overstress profiles near broken fibers in a composite with a viscoelastic matrix, Int. J. Solids struct. 25, 45-66 (1989) · Zbl 0671.73053 · doi:10.1016/0020-7683(89)90103-0
[34] Landis, C.; Mcmeeking, R.: Stress concentrations in composites with interface sliding, matrix stiffness and uneven fiber spacing using shear-lag theory, Int. J. Solids struct. 36, 4333-4361 (1999) · Zbl 0947.74022 · doi:10.1016/S0020-7683(98)00193-0
[35] Mahesh, S.; Phoenix, S.: Lifetime distributions for unidirectional fibrous composites under creep rupture loading, Int. J. Fract. 127, 303-360 (2004) · Zbl 1187.74042 · doi:10.1023/B:FRAC.0000037675.72446.7c
[36] Marshall, D. B.; Shaw, M. C.; Morris, W. L.: Measurement of interfacial debonding and sliding resistance in fiber-reinforced intermetallics, Acta metall. Mater. 40, 443 (1992)
[37] Mason, D. D.; Hui, C. -Y.; Phoenix, S. L.: Stress profiles around a fiber break in a composite with a nonlinear, power law creeping matrix, Int. J. Solids struct. 29, 2829-2854 (1992)
[38] Mclean, M.: Creep deformation of metal matrix composites, Technol. compos. Sci. 23, 37-52 (1985)
[39] Mclean, M.: Creep of metal matrix composites, Materials and engineering design: the next decade, 287 (1989)
[40] Mei, H.; Cheng, L.; Zhang, L.: Damage mechanisms of C/sic composites subjected to constant load and thermal cycling in oxidizing atmosphere, Scr. mater. 54, 163-168 (2006)
[41] Milz, C.; Göring, J.; Schneider, H.: Mechanical and microstructural properties of nextel 720 relating to its suitability for high-temperature application in cmcs, Cer. eng. Sci. proc. 20, 191 (1999)
[42] Morscher, G.; Pirouz, P.; Heuer, A.: Temperature dependence of interfacial shear strength in sic fiber-reinforced reaction-bonded silicon nitride, J. am. Ceram. soc. 73, 713 (1990)
[43] Newcomb, S.; Tressler, R.: Slow crack growth in sapphire fibers from 800 to \(1500^\circ \)C, J. am. Ceram. soc. 76, 2505 (1993)
[44] Newman, W.; Phoenix, S.: Time-dependent fiber bundles with local load sharing, Phys. rev. E 63, 1-20 (2001)
[45] Nimmagadda, P.; Sofronis, P.: Creep strength of fiber and particulate composite materials: the effect of interface slip and diffusion, Mech. mater. 23, 1-19 (1996)
[46] Ohno, N.; Miyake, T.: Stress relaxation in broken fibers in unidirectional composites: modeling and application to creep rupture analysis, Int. J. Plast. 15, 167-189 (1999) · Zbl 1018.74008 · doi:10.1016/S0749-6419(98)00063-1
[47] Ohno, N.; Toyoda, K.; Okamoto, N.; Miyake, T.; Nishide, S.: Creep behavior of unidirectional SCS/ti-15-3 metal matrix composite at \(450^\circ \)C, Trans. ASME series H.J., J. Eng. mater. Technol. 116, 208 (1994)
[48] Ohno, N.; Ando, T.; Miyake, T.; Biwa, S.: A variational method for fiber stress profiles in unidirectional composites with matrix creep, Key eng. Mater., 315-320 (2000) · Zbl 1090.74559
[49] Ohno, N.; Ando, T.; Miyake, T.; Biwa, S.: Analytical solutions for stress concentrations near a fiber break in unidirectional elastoplastic composites, Key eng. Mater., 1005-1010 (2004)
[50] Ohno, N.; Okabe, S.; Okabe, T.: Stress concentrations near a fiber break in unidirectional composites with interfacial slip and matrix yielding, Int. J. Solids struct. 41, 4263-4277 (2004) · Zbl 1079.74547 · doi:10.1016/j.ijsolstr.2004.03.018
[51] Okabe, T.; Takeda, N.; Komotori, J.; Shimizu, M.; Curtin, W.: A new fracture mechanics model for multiple matrix cracks of sic fiber-reinforced brittle matrix composites, Acta mater. 47, 4299-4309 (1999)
[52] Park, Y.; Holmes, J.: Finite element modelling of creep deformation in fibre-reinforced ceramic composites, J. mater. Sci. 27, 6341-6351 (1992)
[53] Phoenix, S. L.; Ibnabdeljalil, M.; Hui, C. -Y.: Size effects in the distribution for strength of brittle matrix fibrous composites, Int. J. Solids struct. 34, 545-568 (1997) · Zbl 0947.74510 · doi:10.1016/S0020-7683(96)00034-0
[54] Ruggles-Wrenn, M.; Mall, S.; Eber, C.; Harlan, L.: Effects of steam environment on high-temperature mechanical behavior of nextel TM720/alumina (N720/A) continuous fiber ceramic composite, Compos. part A 37, 2029-2040 (2007)
[55] Weber, C.; Yang, J.; Lofvander, J.; Levi, C.; Evans, A.: Creep and fracture resistance of O3B3-tial reinforced with al2o3 fibers, Acta metall. Mater. 41, 2690-24681 (1993)
[56] Weber, C.; Du, Z. -Z.; Zok, F.: High temperature deformation and fracture of a fiber-reinforced titanium matrix composite, Acta metall. Mater. 44, 683-695 (1996)
[57] Wilshire, B.: Creep property comparisons for ceramic-fibre-reinforced ceramic matrix composites, J. eur. Ceram. soc. 22, 1329-1337 (2002)
[58] Wilshire, B.; Bache, M.: Creep damage resistance of ceramic matrix composites, J. eur. Ceram. soc. 27, 4603-4611 (2007)
[59] Wu, X.; Holmes, J.: Tensile creep and creep strain recovery behavior of a silicon carbide fiber/calcium aluminosilicate matrix ceramic composites, J. am. Ceram. soc. 76, 2695 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.