×

Fractal dimensions in fluid dynamics and their effects on the Rayleigh problem, the Burger’s vortex and the Kelvin-Helmholtz instability. (English) Zbl 1504.76011

Summary: In this article, we construct fluid equations in fractal dimensions based on the concept of the product-like fractal measure introduced by J. Li and M. Ostoja-Starzewski [Philos. Trans. R. Soc. Lond., A, Math. Phys. Eng. Sci. 378, No. 2172, Article ID 20190288, 16 p. (2020; Zbl 1462.82031)] in their formulation of anisotropic media. Three main problems were discussed and analyzed: the Rayleigh problem, the steady Burger’s vortex and the Kelvin-Helmholtz instability. This study confirms the importance of fractal dimensions in fluid mechanics where several mechanisms were revealed. In particular, long-tails took place in Rayleigh problem analogous to those arising in several superdiffusion processes. Besides, the analysis of the steady Burger’s vortex has proved that the flux rate of dissipation of energy per unit length of vortex depends on the viscosity of the fluid and it is finite for insignificant viscous effects, a scenario which is detected in small-scale turbulent fluid flows. Moreover, it was proved that both the Rayleigh-Taylor and the Kelvin-Helmholtz instabilities are affected by the fractal dimensions and that, for a particular value of the characteristic length as a function of the wavelength, the Kelvin-Helmholtz instability may be suppressed, a particular scenario which is observed in compressible fluid flows and other physical engineering processes.

MSC:

76A99 Foundations, constitutive equations, rheology, hydrodynamical models of non-fluid phenomena
76D99 Incompressible viscous fluids
76E17 Interfacial stability and instability in hydrodynamic stability
76F99 Turbulence
28A80 Fractals

Citations:

Zbl 1462.82031

Software:

COMSOL
Full Text: DOI

References:

[1] Falconer, KJ, Fractal geometry-mathematical foundations and applications (2003), New York: Wiley, New York · Zbl 1060.28005
[2] Mandelbrot, BB, The Fractal Geometry of Nature (1983), New York: W. H. Freeman and Company, New York
[3] Mandelbrot, BB, Fractals: Form, Chance, and Dimension (1977), San Francisco, CA: W. H. Freeman, San Francisco, CA · Zbl 0376.28020
[4] Lee, JS; Chang, KS, Applications of chaos and fractals in process systems engineering, J. Process Cont., 6, 71-87 (1996)
[5] Jacquin, A., An introduction to fractals and their applications in electrical engineering, J. Frank. Inst., 331, 659-680 (1994) · Zbl 0829.28006
[6] V. S. Ivanova, I, J. Bunin, V. I. Nosenko, Fractal material science: a new direction in materials science, JOM50, (1998) 52-54.
[7] Carpinteri, A., Fractal nature of material microstructure and size effects on apparent mechanical properties, Mech. Materials, 18, 89-101 (1994)
[8] Agrisuelas, J.; García-Jareño, JJ; Gimenez-Romero, D.; Negrete, F.; Vicente, F., The fractal dimension as estimator of the fractional content of metal matrix composite materials, J. Solid State Electrochem., 13, 1599-1603 (2009)
[9] D. D. Khamidulina, S. A. Nekrasova, Fractals in construction material science, In:IOP Conf. Ser.: Mater. Sci. Eng. 451, (2018) 012026.
[10] Tsujii, K., Fractal materials and their functional properties, Polymer J., 40, 785 (2008)
[11] Werner, M.; Sommer, J-U, Self-organized stiffness in regular fractal polymer structures, Phys. Rev. E, E83, 051802 (2011)
[12] Sukhov, VM; Rudoy, VM, Multifractal analysis of nanodeformation of glassy polymer surface, Colloid J., 76, 85 (2014)
[13] Pothuaud, L.; Benhamou, CL; Porion, P.; Lespessailles, E.; Harba, R.; Levitz, P., Fractal dimension of trabecular bone projection texture is related to three-dimensional microarchitecture, J. Bone Mineral Res., 15, 691 (2000)
[14] Carpinteri, A.; Cornetti, P.; Pugno, N.; Sapora, A., Fractals to model hierarchical biomaterials, Adv. Sci. Tech., 58, 54 (2008)
[15] Roy, S.; Tarafdar, S., Archie’s law from a fractal model for porous rocks, Phys. Rev. B, 55, 8038 (1997)
[16] Radliński, AP; Radlińska, EZ; Agamalian, M.; Wignall, GD; Lindner, P.; Randl, OG, Fractal geometry of rocks, Phys. Rev. Lett., 82, 3078 (1999)
[17] S. W. Coleman, J. C. Vassilicos, Tortuosity of unsaturated porous fractal materials, Phys. Rev. E78, (2008) 016308.
[18] Balankin, AS; Bugrimov, AL, A fractal theory of polymer plasticity, Polymer Sci. USSR, 34, 246 (1992)
[19] Balankin, AS; Bugrimov, AL, Fractal theory of elasticity and rubber-like state of polymers, Polymer Sci., 34, 889 (1992)
[20] Balankin, AS; Tamayo, P., Fractal solid mechanics, Rev. Mex. Phys., 40, 506 (1994)
[21] Balankin, AS, Elastic behavior of materials with multifractal structure, Phys. Rev. B, 53, 5438 (1996)
[22] Balankin, AS, The theory of multifractal elasticity: basic laws and constitutive equations, Rev. Mex. Phys., 42, 343 (1996) · Zbl 1291.74050
[23] Zubair, M.; Mughal, MJ; Naqvi, QA, The wave equation and general plane wave solutions in fractional space, Prog. Electromagnet. Res. Lett., 19, 137-146 (2010)
[24] Zubair, M.; Mughal, MJ; Naqvi, QA, An exact solution of the spherical wave equation in D-dimensional fractional space, J. Electromagnet. Waves Appl., 25, 481-1491 (2011)
[25] Balankin, AS; Mena, B.; Patiño, J.; Morales, D., Electromagnetic fields in fractal continua, Phys. Lett. A, 377, 783-788 (2013) · Zbl 1428.78009
[26] Ostoja-Starzewski, M., Towards thermoelasticity of fractal media, J. Therm. Stress, 30, 889 (2007) · Zbl 1126.74004
[27] Ostoja-Starzewski, M.; Li, J., Fractal materials, beams and fracture mechanics, Z. Angew. Math. Phys., 60, 1194-1205 (2009) · Zbl 1319.74002
[28] Li, J.; Ostoja-Starzewski, M., Micropolar continuum mechanics of fractal media, Int. J. Eng. Sci., 49, 1302 (2011) · Zbl 1423.74040
[29] Demmie, PN; Ostoja-Starzewski, M., Waves in fractal media, J. Elasticity, 104, 187 (2011) · Zbl 1311.74057
[30] J. Li, M. Ostoja-Starzewski, Fractal solids, product measures and fractional wave equations. In: Proc. Royal Soc. A: Math. Phys. Eng. Sci. 465, (2009) 2521. · Zbl 1186.74011
[31] Ostoja-Starzewski, M.; Li, J.; Joumaa, H.; Demmie, PN, From fractal media to continuum mechanics, Z. Angew. Math. Mech., 93, 1 (2013) · Zbl 1302.74011
[32] Ostoja-Starzewski, M., Extremum and variational principles for elastic and inelastic media with fractal geometries, Acta Mech., 205, 161-170 (2009) · Zbl 1167.74017
[33] A. S. Balankin, Towards the mechanics of fractal materials: mechanics of continuum with fractal metric, arXiv: 1409.5829.
[34] El-Nabulsi, RA, Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal, J. Stat. Phys., 172, 1617-1640 (2018) · Zbl 1401.83005
[35] El-Nabulsi, RA, Emergence of quasiperiodic quantum wave functions in Hausdorff dimensional crystals and improved intrinsic carrier concentrations, J. Phys. Chem. Sol., 127, 224-230 (2019)
[36] El-Nabulsi, RA, On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics, Proc. Roy. Soc., A476, 20190729 (2020) · Zbl 1439.81065
[37] El-Nabulsi, RA, Inverse-power potentials with positive-bound energy spectrum from fractal, extended uncertainty principle and position-dependent mass arguments, Eur. Phys. J., P135, 683 (2020)
[38] El-Nabulsi, RA, Dirac equation with position-dependent mass and coulomb-like field in Hausdorff dimension, Few Body Syst., 61, 10 (2020)
[39] El-Nabulsi, RA, On generalized fractional spin, fractional angular momentum, fractional momentum operators and noncommutativity in quantum mechanics, Few Body Syst., 61, 1-13 (2020)
[40] El-Nabulsi, RA, Modifications at large distances from fractional and fractal arguments, Fractals, 18, 185-190 (2010) · Zbl 1196.28014
[41] Cornish, NJ; Levin, JL, Chaos, fractals and inflation, Phys. Rev. D, 53, 3022-3032 (1996)
[42] G. Calcagni, Fractal universe and quantum gravity, Phys. Rev. Lett. 104, (2010) 251301. · Zbl 1271.83032
[43] El-Nabulsi, RA, Oscillating flat FRW dark energy dominated cosmology from periodic functional approach, Comm. Theor. Phys., 54, 16 (2010) · Zbl 1213.83147
[44] El-Nabulsi, RA, New metrics from a fractional gravitational field, Comm. Theor. Phys., 68, 309 (2017) · Zbl 1377.83087
[45] Sreenivasan, KR, Fractals and multifractals in fluid turbulence, Ann. Rev. Fluid Mech., 23, 539-604 (1991)
[46] Giacomazzi, E.; Bruno, C.; Favini, B., Fractal modelling of turbulent combustion, Comb. Theor. Mod., 4, 391-412 (2000) · Zbl 1007.76093
[47] Cintosum, E.; Smallwood, GJ; Gulder, OL, Flame surface fractal characteristics in premixed turbulent combustion at high temperature intensities, AIAA J., 45, 2785-2789 (2007)
[48] Sreenivasan, KR; Meneveau, C., The fractal facets of turbulence, J. Fluid Mech., 173, 357-386 (1986)
[49] Gouldin, FC, An application of fractals to modeling premixed turbulent flames, Comb. Flame, 68, 249-266 (1987)
[50] Mazzi, B.; Vassilicos, JC, Fractal-generated turbulence, J. Fluid Mech., 502, 65-87 (2004) · Zbl 1134.76362
[51] Ueki, Y.; Tsuji, Y.; Nakamura, I., Fractal analysis of a circulating flow field with two different velocity laws, Eur. J. Mech. B/Fluids, 18, 959-975 (1999) · Zbl 0972.76043
[52] El-Nabulsi, RA, Fractional Navier-Stokes equation from fractional velocity arguments and its implications in fluid flows and microfilaments, Int. J. Nonlinear Sci. Numer. Simul., 20, 449-459 (2019) · Zbl 1476.35305
[53] El-Nabulsi, RA, Geostrophic flow and wind driven ocean currents based on dimensionality of the space medium, Pure Appl. Geophys., 176, 2739-2750 (2019)
[54] El-Nabulsi, RA, Nonlocal-in-time kinetic energy in nonconservative fractional systems, disordered dynamics, jerk and snap and oscillatory motions in the rotating fluid tube, Int. J. Nonlin. Mech., 93, 65-81 (2017)
[55] Heinen, M.; Schnyder, SK; Brady, JF; Lowen, H., Classical liquids in fractal dimension, Phys. Rev. Lett., 115, 097801 (2015)
[56] Tarasov, VE, Flow of fractal liquid in pipes: non-integer dimensional space approach, Chaos, Solitons Fractals, 67, 26-37 (2014) · Zbl 1349.76066
[57] Mitchell, KV; Tan, AJ; Arteaga, J.; Hirst, LS, Fractal generation in a two-dimensional active-nematic fluid, Chaos, 31, 073121 (2021) · Zbl 1468.92019
[58] Muzzio, FJ; Meneveau, C.; Swanson, PD; Ottino, JM, Scaling and multifractal properties of mixing in chaotic flows, Phys. Fluids A, 4, 1439-1456 (1992)
[59] Toppaladoddi, S.; Wells, AJ; Doering, CR; Wettlaufer, JS, Thermal convection over fractal surfaces, J. Fluid Mech., 907, A12 (2021) · Zbl 1461.76247
[60] Cabrera, JL; Gutierrez, ED; Marquez, MR, Marquez, criticality and the fractal structure of -5/3 turbulent cascades, Chaos Solitons Fractals, 146, 110876 (2021) · Zbl 1498.39021
[61] Lanotte, AS; Benzi, R.; Malapaka, SK; Toschi, F.; Biferale, L., Turbulence on a fractal Fourier set, Phys. Rev. Lett., 115, 264502 (2015)
[62] Lanotte, AS; Malapaka, SK; Biferale, L., On the vortex dynamics in fractal Fourier turbulence, Eur. Phys. J. E, 39, 49 (2016)
[63] Zhu, X.; Anderson, W., Turbulent flow over urban-like fractals: prognostic roughness model for unresolved generations, J. Turbulence, 19, 995-1016 (2018)
[64] Ali, N.; Fuchs, A.; Neunaber, I.; Peinke, J.; Cal, RB, Multi-scale/fractal processes in the wake of a wind turbine array boundary layer, J. Turbulence, 20, 93-120 (2019)
[65] El-Nabulsi, RA, On nonlocal fractal laminar steady and unsteady flows, Acta Mech., 232, 1413-1424 (2021) · Zbl 1484.76025
[66] El-Nabulsi, RA, Free variable mass nonlocal systems, jerks, and snaps, and their implications in rotating fluids in rockets, Acta Mech., 232, 89-109 (2021) · Zbl 1458.70018
[67] G. Łukaszewicz, P. Kalita, Navier-Stokes Equations: an introduction with applications. In: Łukaszewicz G., Kalita P. (eds.) Advances in Mechanics and Mathematics, Vol. 34, Springer (2016) · Zbl 1352.35001
[68] Sumelka, W., On fractional non-local bodies with variable length scale, Mech. Res. Commun., 86, 5-10 (2017)
[69] Drapaca, CS; Sivaloganathan, SA, fractional model of continuum mechanics, J. Elast., 107, 105-123 (2012) · Zbl 1451.74219
[70] El-Nabulsi, RA, Fractional variational symmetries of Lagrangians, the fractional Galilean transformation and the modified Schrödinger equation, Nonlinear Dyn., 81, 939-948 (2015) · Zbl 1347.26020
[71] El-Nabulsi, RA, The fractional Boltzmann transport equation, Comp. Math. Appl., 62, 1568-1575 (2011) · Zbl 1228.82075
[72] El-Nabulsi, RA, The fractional white dwarf hydrodynamical nonlinear differential equation and emergence of quark stars, Appl. Math. Comp., 218, 2837-2849 (2011) · Zbl 1243.85006
[73] Goychuk, I., Fractional hydrodynamic memory and superdiffusion in titled washboard potentials, Phys. Rev. Lett., 123, 180603 (2019)
[74] Song, F.; Em Karniadakis, G., Fractional magneto-hydrodynamics: algorithms and applications, J. Comp. Phys., 378, 44-62 (2019) · Zbl 1416.76127
[75] Kumar, D.; Kumar, S.; Abbasbandy, S.; Rashidi, MM, Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method, Ain Shams Eng. J., 5, 569-574 (2014)
[76] Wang, K.; Liu, S., Analytical study of time-fractional Navier-Stokes equation by using transform methods, Adv. Diff. Equa., 2016, 61 (2016) · Zbl 1419.35230
[77] Khan, NA, Analytical study of Navier-Stokes equation with fractional orders using He’s homotopy perturbation and variational iteration methods, Int. J. Nonlinear Sci. Numer. Simul., 10, 9, 1127-1134 (2009)
[78] Daftardar-Gejji, V.; Jafari, H., An iterative method for solving nonlinear functional equation, J. Math. Anal. Appl., 316, 753-763 (2016) · Zbl 1087.65055
[79] Pishkoo, A.; Darus, M., Using fractal calculus to solve fractal Navier-Stokes equations, and simulation of laminar static mixing in COMSOL multiphysics, Frac. Fract., 5, 16 (2021)
[80] Parvate, A.; Gangal, AD, Calculus on fractal subsets of real-line I: formulation, Fractals, 17, 53-148 (2009) · Zbl 1173.28005
[81] Parvate, A.; Gangal, AD, Calculus on fractal subsets of real line II: conjugacy with ordinary calculus, Fractals, 19, 271-290 (2011) · Zbl 1252.28005
[82] Gangal, AD; Parvate, A.; Satin, S., Calculus on fractal curves in rn, Fractals, 19, 15-27 (2011) · Zbl 1217.28014
[83] Scheffer, V., Fractal geometry and turbulence-Navier-Stokes equations and the Hausdorff dimension, Acad. Sci. Paris: Compt. Rend. A-Sci. Math., 282, 121 (1978)
[84] Ladyzhenskaya, OA, Estimates of the fractal dimension and the number of determining modes of invariant sets of dynamical systems, J. Sov. Math., 49, 1186-1201 (1990) · Zbl 0696.58041
[85] Babin, AV; Vishik, MI, Attractors of Navier-Stokes systems and of parabolic equations, and estimates for their dimensions, J. Sov. Math., 28, 619-627 (1985) · Zbl 0562.35067
[86] Kukavica, I., The fractal dimension of the singular set of solutions of the Navier-Stokes system, Nonlinearity, 22, 2889 (2009) · Zbl 1181.35173
[87] Zhang, X., Stochastic Lagrangian particle approach to fractal Navier-Stokes equations, Comm. Math. Phys., 311, 133-155 (2012) · Zbl 1251.35203
[88] Constantin, P.; Foias, C.; Manley, OP; Temam, R., Determining modes and fractal dimension of turbulent flows, J. Fluid Mech., 150, 427-440 (1985) · Zbl 0607.76054
[89] Hinz, M.; Teplyaev, A., Local Dirichlet forms, Hodge theory, and the Navier-Stokes equations on topologically one-dimensional fractals, Trans. Amer. Math. Soc., 367, 1347-1380 (2015) · Zbl 1307.31023
[90] Chepyzhov, VV; Llyin, AA, On the fractal dimension of invariant sets: applications to Navier-Stokes equation, Dis. Cont. Dyn. Syst., 10, 117-135 (2014) · Zbl 1049.37047
[91] Yang, X-G; Guo, B.; Li, D., The fractal dimension of pullback attractors of the 2D Navier-Stokes equations with delay, Math. Meth. Appl. Sci., 43, 9637-9653 (2020) · Zbl 1455.35179
[92] Mahalov, A.; Riti, ES; Leibovich, S., Invariant helical subspaces for the Navier-Stokes equations, Arch. Rational Mech. Anal., 112, 193-222 (1990) · Zbl 0708.76044
[93] Biferale, L.; Procaccia, I., Anisotropy in turbulent flows and in turbulent transport, Phys. Rep., 414, 43-164 (2005)
[94] Biferale, L.; Toschi, F., Anisotropic homogeneous turbulence: hierarchy and intermittency of scaling exponents in the anisotropic sectors, Phys. Rev. Lett., 86, 4831-4834 (2001)
[95] Andersson, M.; Karlsson, M., Characterization of anisotropic turbulence behavior in pulsatile blood flow, Biomech. Mod. Mechanobio., 20, 491-506 (2021)
[96] Cambon, C.; Scott, JF, Linear and nonlinear models of anisotropic turbulence, Ann. Rev. Fluid Mech., 31, 1-53 (1999)
[97] Furukawa, J.; Noguchi, Y.; Hirano, T.; Williams, FA, Anisotropic enhancement of turbulence in large-scale low-intensity turbulent premixed propane-air flames, J. Fluid Mech., 462, 209-243 (2002) · Zbl 1009.76503
[98] Radenković, DR; Burazer, JM; Novković, ĐM, Anisotropy analysis of turbulent swirl flow, FME Trans., 42, 19-25 (2014)
[99] Escue, A.; Cui, J., Comparison of turbulence models in simulating swirling pipe flows, Appl. Math. Mod.: Simul, Como. Eng. Environ. Syst., 34, 2840-2849 (2010) · Zbl 1201.76090
[100] Giacomazzi, E.; Bruno, C.; Favini, B., Fractal modeling of turbulent mixing, Combust. Theor. Mod., 3, 637-655 (1999) · Zbl 0962.76036
[101] Manshoor, B.; Nicolleau, F.; Beck, SBM, The fractal flow conditioner for orifice plate flow meters, Flow Meas. Instrument., 22, 208-214 (2011)
[102] Verbeek, AA; Bouten, TWFM; Stoffels, GGM; Geurts, BJ; van der Meer, TH, Fractal turbulence enhancing low-swirl combustion, Comb. Flame, 162, 129-143 (2015)
[103] Goh, KHH; Geipel, P.; Lindstedt, RP, Lean premixed opposed jet flames in fractal grid generated multiscale turbulence, Comb. Flame, 161, 2419-2434 (2014)
[104] Soulopoulos, N.; Kerl, J.; Sponfeldner, T.; Beyrau, F.; Hardalupas, Y.; Taylor, AMKP; Vassilicos, JC, Turbulent premixed flames on fractal-grid-generated turbulence, Fluid Dyn. Res., 45, 6 (2013) · Zbl 1291.76021
[105] Kulkarni, T.; Bisetti, F., Surface morphology and inner fractal cutoff scale of spherical turbulent premixed flames in decaying isotropic turbulence, Proc. Combust. Inst., 38, 2861-2868 (2021)
[106] Krogstad, PÅ; Davidson, PA, Freely decaying, homogeneous turbulence generated by multi-scale grids, J. Fluid Mech., 680, 417-434 (2011) · Zbl 1241.76034
[107] Thormann, A.; Meneveau, C., Decay of homogeneous, nearly isotropic turbulence behind active fractal grids, Phys. Fluids, 26, 025112 (2014)
[108] Mandelbrot, BB, On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars, J. Fluid Mech., 72, 401-416 (1975) · Zbl 0329.76047
[109] Mora, DO; Bourgoin, M.; Mininni, PD; Obligado, M., Clustering of vector nulls in homogeneous isotropic turbulence, Phys. Rev. Fluids, 6, 024609 (2021)
[110] Roy, A.; Sujith, RI, Fractal dimension of premixed flames in intermittent turbulence, Comb. Flame, 226, 412-418 (2021)
[111] Jou, D.; Mongiovi, MS; Sciacca, M.; Barenghi, CF, Vortex length, vortex energy and fractal dimension of superfluid turbulence at very low temperature, J. Phys. A: Math. Gen., 43, 205501 (2010) · Zbl 1277.76027
[112] Bambauer, M.; Chakraborty, N.; Klein, M.; Hasslberger, J., Vortex dynamics and fractal structures in reactive and nonreactive Richtmyer-Meshkov instability, Phys. Fluids, 33, 044114 (2021)
[113] N. Zhihui, W. Lichun, M.-H. Wang, Y. Jing, Z. Qiang, The fractal dimension of river length based on the observed data, J. Appl. Math. 2013, (2013) Article ID 327297. · Zbl 1271.28010
[114] Kestener, P.; Arneodo, A., Generalizing the wavelet-based multifractal formalism to random vector fields: application to three-dimensional turbulence velocity and vorticity data, Phys. Rev. Lett., 93, 044501 (2004)
[115] Balankin, AS; Mena, B.; Susarrey, O.; Samayoa, D., Steady laminar flow of fractal fluids, Phys. Lett. A, 381, 623-628 (2017) · Zbl 1372.76006
[116] Beeson-Jones, TH; Woods, AW, Evidence for a universal saturation profile for radial viscous fingers, Sci. Rep., 9, 7780 (2019)
[117] Måløy, KJ; Feder, J.; Jøssang, T., Viscous fingering fractals in porous media, Phys. Rev. Lett., 55, 2688-2691 (1985)
[118] Witten, TA; Sander, LM, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett., 47, 1400-1403 (1981)
[119] Whitaker, S., Flow in porous media I: a theoretical derivation of Darcy’s law, Transport Porous Med., 1, 3-25 (1986)
[120] Whitaker, S., Flow in porous media II: the governing equations for immiscible, two-phase flow, Transport Porous Med., 1, 105-125 (1986)
[121] Saffman, PG; Taylor, GI, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous fluid, Proc. R. Soc. London, 245, 1242, 312-329 (1958) · Zbl 0086.41603
[122] B. Lagrée, S. Zaleski, I. Bondino, C. Josserand, S. Popinet, Scaling properties of viscous fingering, arXiv: 1410.8659.
[123] Sander, LM, Fractal growth processes, Nature, 322, 6082, 789-793 (1986)
[124] Witten, TA; Sander, LM, Diffusion-limited aggregation, Phys. Rev. B, 27, 5686-5697 (1983)
[125] Chen, J-D; Wilkinson, D., Pore-scale viscous fingering in porous media, Phys. Rev. Lett., 55, 1892-1895 (1985)
[126] Park, C-W; Homsy, GM, The instability of long fingers in Hele-Shaw flow, Phys. Fluids, 28, 6, 1583-1585 (1985)
[127] Vassilicos, JC; Brasseur, JG, Self-similar spiral flow structure in low Reynolds number isotropic and decaying turbulence, Phys. Rev. E, 54, 467-485 (1996)
[128] Li, J.; Ostoja-Starzewski, M., Thermo-poromechanics of fractal media, Phil. Trans. Roy. Soc., A378, 20190288 (2020) · Zbl 1462.82031
[129] J. Li, M. Ostoja-Starzewski, M.: Fractal solids, product measures and continuum mechanics. In: Maugin G.A., Metrikine, A.V. (eds.) Mechanics of Generalized Continua: One Hundred Years After the Cosserats, pp. 315-323. Springer, Berlin (2010). Chap. 33. · Zbl 1396.74049
[130] El-Nabulsi, RA, Thermal transport equations in porous media from product-like fractal measure, J. Therm. Stress., 44, 899-912 (2021)
[131] El-Nabulsi, RA, Superconductivity and nucleation from fractal anisotropy and product-like fractal measure, Proc. Roy. Soc., A477, 20210065 (2021)
[132] El-Nabulsi, RA, Quantum dynamics in low-dimensional systems with position-dependent mass and product-like fractal geometry, Phys. E: Low Dim. Syst. Nanostruct., 134, 114827 (2021)
[133] El-Nabulsi, RA, On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics, Proc. R. Soc., A476, 20190729 (2020) · Zbl 1439.81065
[134] El-Nabulsi, RA, Quantization of Foster mesoscopic circuit and DC-pumped Josephson parametric amplifier from fractal measure arguments, Phys. E: Low Dim. Syst. Nanostruct., 133, 114845 (2021)
[135] El-Nabulsi, RA, Position-dependent mass fractal Schrodinger equation from fractal anisotropy and product-like fractal measure and its implications in quantum dots and nanocrystals, Opt. Quant. Elect., 53, 503 (2021)
[136] El-Nabulsi, RA, Fractal neutrons diffusion equation: uniformization of heat and fuel burn-up in nuclear reactor, Nucl Eng. Des., 380, 111312 (2021)
[137] El-Nabulsi, RA, Fractal Pennes and Cattaneo-Vernotte bioheat equations from product-like fractal geometry and their implications on cells in the presence of tumour growth, J. R. Soc. Interface (2021) · doi:10.1098/rsif.2021.0564
[138] El-Nabulsi, RA; Anukool, W., Quantum dots and cuboid quantum wells in fractal dimensions with position-dependent masses, Appl. Phys. A, 127, 856 (2021)
[139] Malyarenko, A.; Ostoja-Starzewski, M., Fractal planetary rings: energy inequalities and random field model, Int. J. Mod. Phys. B, 31, 1750236 (2017) · Zbl 1434.85010
[140] Jumarie, G., Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Appl. Math. Lett., 22, 378-385 (2008) · Zbl 1171.26305
[141] Tarasov, VE, Fractional hydrodynamic equations for fractal media, Ann. Phys., 318, 286-307 (2005) · Zbl 1071.76002
[142] Tarasov, VE, Fractional Dynamics: Applications of Fractional Calculus to Dynamics, of Particles, Fields, and Media (2010), Heidelberg, Germany: Springer, Heidelberg, Germany · Zbl 1214.81004
[143] Tarasov, VE, Continuous medium model for fractal media, Phys. Lett. A, 336, 2, 167-174 (2005) · Zbl 1136.81443
[144] Mashayekhi, S.; Miles, P.; Hussaini, MY; Oates, WS, Fractional viscoelasticity in fractal and non-fractal media: theory, experimental validation, and uncertainty analysis, J. Mech. Phys. Solids, 111, 134-156 (2018) · Zbl 1441.74049
[145] Mashayekhi, S.; Hussaini, MY; Oates, WS, A physical interpretation of fractional viscoelasticity based on the fractal structure of media: theory and experimental validation, J. Mech. Phys. Solids, 128, 137-150 (2019)
[146] Mashayekhi, S.; Beerli, P., Fractional coalescent, Proc. Nat. Acad. Sci., 116, 6244-6249 (2019)
[147] Mashayekhi, S.; Sedaghat, S., Fractional model of stem cell population dynamics, Chaos Solitons Fractals, 146, 110919 (2021)
[148] Oates, W.; Stanisaukis, E.; Pahari, BR; Mashayekhi, S., Entropy dynamics approach to fractional order mechanics with applications to elastomers, Behav. Mech. Multifunct. Mater. XV, 11589, 1158905 (2021)
[149] El-Nabulsi, RA, Some geometrical aspects of nonconservative autonomous Hamiltonian dynamical systems, Int. J. Appl. Math. Stat., 5, 50-61 (2006) · Zbl 1141.70312
[150] El-Nabulsi, RA, Some implications of position-dependent mass quantum fractional Hamiltonian in quantum mechanics, Eur. Phys. J., P134, 192 (2019)
[151] El-Nabulsi, RA, Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems, Chaos, Solitons Fractals, 42, 52-61 (2009) · Zbl 1198.70010
[152] El-Nabulsi, RA; Wu, G-C, Fractional complexified field theory from Saxena-Kumbhat fractional integral, fractional derivative of order () and dynamical fractional integral exponent, Afr. Diasp. J. Math., 13, 56-61 (2012) · Zbl 1267.49037
[153] El-Nabulsi, RA; Torres, DFM, Fractional actionlike variational problems, J. Math. Phys., 49, 053521 (2008) · Zbl 1152.81422
[154] Chen, W., Time-space fabric underlying anomalous diffusion, Chaos Soliton. Fract., 28, 923-929 (2006) · Zbl 1098.60078
[155] Chen, W.; Wang, F.; Zheng, B.; Cai, W., Non-Euclidean distance fundamental solution of Hausdorff derivative partial differential equations, Eng. Anal. Bound. Elem., 84, 213-219 (2017) · Zbl 1403.65252
[156] Y. Liang, N. Su, W. Chen, X. Fang, A time-space Hausdorff fractal model for non-Fickian transport in porous media. arXiv: 1808.00134.
[157] Schlichting, H.; Gersten, K., Boundary Layer Theory (2000), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 0940.76003
[158] H.-S. Dou, Secret hidden in Navier-Stokes equations: singularity and criterion of turbulent transition, Talk given at the APS 67th Annual Meeting of the Division of Fluid Dynamics, Nov. 23-25, 2014, San Francisco, USA; arXiv: 1409.0086.
[159] Bouchaud, JP; Georges, A., Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195, 127-293 (1990)
[160] Richardson, LF, Atmospheric diffusion shown on a distance-neighbour graph, Proc. Roy. Soc. A, 110, 709 (1926)
[161] Viecelli, JA, On the possibility of singular low-frequency spectra and Lévy law persistence statistics in the planetary-scale turbulent circulation, J. Atmos. Sci., 55, 677 (1988)
[162] Burgers, J., A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1, 171-199 (1948)
[163] H. K. Moffat.: 2011 A brief introduction to vortex dynamics and turbulence, Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, Environmental Hazards, pp. 1-27 · Zbl 1352.76029
[164] M. Abramowitz, I. A. Stegun IA (Eds.), Exponential Integral and Related Functions, Ch. 6.5 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. Dover, New York, 1972. · Zbl 0543.33001
[165] Tang, Y.; Bao, S.; Guo, W., Superdiffusion and quantized vortices uncovering scaling laws in quantum turbulence, PNAS, 118, 6 (2021)
[166] Arfken, G.; Weber, H., Mathematical Methods for Physicists (2000), Harcourt/Academic Press · Zbl 1066.00001
[167] Elsinga, GE; Ishihara, Y.; Hunt, JCR, Extreme dissipation and intermittency in turbulence at very high Reynolds numbers, Proc. R. Soc., A476, 20200591 (2020) · Zbl 1472.76048
[168] Khan, M.; Ali, SH; Qi, H., Exact solutions of starting flow for a fractional Burgers’ fluid between coaxial cylinders, Nonlinear Anal Real World Appl, 10, 1775-1783 (2009) · Zbl 1160.76003
[169] Ali Muttaqi, SH, Some helical flows of a Burger’s fluid with fractional derivative, Meccanica, 45, 143-151 (2010) · Zbl 1258.76026
[170] Sugimoto, N., Burgers equation with a fractional derivative-, hereditary effects on nonlinear acoustic waves, J. Fluid Mech., 225, 631-653 (1991) · Zbl 0721.76011
[171] Kivotides, D.; Barenghi, CF; Samuels, DC, Fractal dimension of superfluid turbulence, Phys. Rev. Lett., 87, 155301-155303 (2001)
[172] Avinash, K.; Sen, A., Rayleigh-Taylor instability in dusty plasma experiment, Phys. Plasmas, 22, 083707 (2015)
[173] Scase, MM; Baldwin, KA; Hill, RJA, Rotating Rayleigh-Taylor instability, Phys. Rev. Fluids, 2, 024801 (2017)
[174] V. Springel, C. P. Dullemond, Numerical Fluid Mechanics, Lectures given at the University of Heidelberg, Germany, 2011-2012.
[175] Salih, A., Kelvin-Helmholtz instability, Lectures Given at the Indian Institute of Space Science and Technology (2010), Thiruvananthapuram, India, November: Department of Aerospace Engineering, Thiruvananthapuram, India, November
[176] Panton, RL, Incompressible Flow (2005), New York: John Wiley, New York · Zbl 1275.76001
[177] Sun, W.; Zhong, J.; Lei, Z.; Zhang, S.; Wang, L.; Zhao, K.; An, W.; Ping, U.; Han, B.; Yuan, D.; Tong, B.; Zhang, Q.; Yuan, X.; Zhu, B.; Zhang, Z.; Li, Y.; Qiao, B.; Cheng, L.; Wang, J.; Xing, C.; Jiang, W.; Wei, H.; Liang, G.; Xie, Z.; Wang, C.; Jin, M.; Zhao, G.; Zhang, J., Suppressing Kelvin-Helmholtz instability with an external magnetic field, Plasma Phys. Control. Fusion, 62, 065007 (2020)
[178] Karimi, M.; Girimaji, SS, Suppression mechanism of Kelvin-Helmholtz instability in compressible fluid flows, Phys. Rev. E, 93, 041102 (2016)
[179] Yoshikawa, H.; Wesfreid, JE, Oscillatory Kelvin-Helmholtz instability. Part 1. A viscosity theory, J. Fluid Mech., 675, 223-248 (2011) · Zbl 1241.76218
[180] Yoshikawa, H.; Wesfreid, JE, Oscillatory Kelvin-Helmholtz instability. Part 2. An experiment in fluids with a large viscosity contrast, J. Fluid Mech., 675, 249-267 (2011) · Zbl 1241.76219
[181] Luc, NH; Huynh, LN; O’Regan, D.; Can, NH, Regularization of the fractional Rayleigh-Stokes equation using a fractional Landweber method, Adv. Diff. Equa., 2020, 459 (2020) · Zbl 1486.65055
[182] Hayat, T.; Khan, M.; Asghar, S., On the MHD flow of fractional generalized Burger’s fluid with modified Darcy’s law, Acta Mech. Sin., 23, 257-261 (2007) · Zbl 1202.76155
[183] Bradley, DI; Fisher, SN; Guenault, AM; Haley, RP; Pickett, GR; Potts, D.; Tsepelin, V., Direct measurement of the energy dissipated by quantum turbulence, Nat. Phys., 7, 473-476 (2011)
[184] Johnson, PL, Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions, Phys. Rev. Lett., 124, 104501 (2020)
[185] Ahuja, J.; Sharma, J., Rayleigh-Benard instability in nanofluids: a comprehensive review, Micro Nano Syst. Lett., 8, 21 (2020)
[186] Girotra, P.; Ahuja, J.; Verma, D., Analysis of Rayleigh Taylor instability in nanofluids with rotation, Algebra Control Opt Numer (2021) · Zbl 1504.76035 · doi:10.3934/naco.2021018
[187] Gallaire, F.; Brun, P-T, Fluid dynamics instabilities: theory and application to pattern forming in complex media, Phil. Trans. R. Soc., A375, 20160155 (2017) · Zbl 1404.76098
[188] Iyer, KP; Schumacher, J.; Sreenivasan, KR; Yeung, PK, Fractal iso-level sets in high-Reynolds-number scalar turbulence, Phys. Rev. Fluids, 5, 044501 (2020)
[189] Iyer, KP; Schumacher, J.; Sreenivasan, KR; Yeung, PK, Stiff cliffs and saturated exponents in three-dimensional scalar turbulence, Phys. Rev. Lett., 121, 264501 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.