×

From fractal media to continuum mechanics. (English) Zbl 1302.74011

Summary: This paper presents an overview of modeling fractal media by continuum mechanics using the method of dimensional regularization. The basis of this method is to express the balance laws for fractal media in terms of fractional integrals and, then, convert them to integer-order integrals in conventional (Euclidean) space. Following an account of this method, we develop balance laws of fractal media (continuity, linear and angular momenta, energy, and second law) and discuss wave equations in several settings (1d and 3d wave motions, fractal Timoshenko beam, and elastodynamics under finite strains). We then discuss extremum and variational principles, fracture mechanics, and equations of turbulent flow in fractal media. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions and reduce to conventional forms for continuous media with Euclidean geometries upon setting the dimensions to integers. We also point out relations and potential extensions of dimensional regularization to other models of microscopically heterogeneous physical systems.

MSC:

74A45 Theories of fracture and damage
28A80 Fractals
26A33 Fractional derivatives and integrals
74Q05 Homogenization in equilibrium problems of solid mechanics
Full Text: DOI

References:

[1] B.Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, New York, 1982). · Zbl 0504.28001
[2] M.F.Barnsley, Fractals Everywhere (Morgan Kaufmann, San Francisco, CA, 1993). · Zbl 0784.58002
[3] A.Le Méhauté, Fractal Geometry: Theory and Applications (CRC Press, Boca Raton, FL, 1991). · Zbl 0805.58002
[4] H.M.Hastings and G.Sugihara, Fractals: A User’s Guide for the Natural Sciences (Oxford Science Publications, Oxford, 1993). · Zbl 0820.28003
[5] K.Falconer, Fractal Geometry: Mathematical Foundations and Applications (J. Wiley, Chichester, 2003). · Zbl 1060.28005
[6] V.E.Tarasov, Fractional hydrodynamic equations for fractal media, Ann. Phys. (New York)318(2), 286-307 (2005). · Zbl 1071.76002
[7] V.E.Tarasov, Wave equation for fractal solid string, Mod. Phys. Lett. B19(15), 721-728 (2005). · Zbl 1078.74021
[8] M.Ostoja‐Starzewski, Towards thermomechanics of fractal media, Z. Angew. Math. Phys.58(6), 1085-1096 (2007). · Zbl 1126.74004
[9] M.Ostoja‐Starzewski, Extremum and variational principles for elastic and inelastic media with fractal geometries, Acta Mech.205, 161-170 (2009). · Zbl 1167.74017
[10] M.Ostoja‐Starzewski, On turbulence in fractal porous media, Z. Angew. Math. Phys.59(6), 1111-1117 (2008). · Zbl 1304.76024
[11] H.Joumaa and M.Ostoja‐Starzewski, On the wave propagation in isotropic fractal media, Z. Angew. Math. Phys.62, 1117-1129 (2011). · Zbl 1291.74094
[12] J.Li and M.Ostoja‐Starzewski, Fractal materials, beams and fracture mechanics, Z. Angew. Math. Phys.60, 1-12 (2009).
[13] G.Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann‐Liouville derivative for non‐differentiable functions, Appl. Math. Lett.22(3), 378-385 (2009). · Zbl 1171.26305
[14] V.E.Tarasov, Continuous medium model for fractal media, Phys. Lett. A336, 167-174 (2005). · Zbl 1136.81443
[15] V.E.Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, Berlin, Heidelberg, New York, 2010). · Zbl 1214.81004
[16] J.C.Collins, Renormalization (Cambridge University Press, Cambridge, 1984). · Zbl 1094.53505
[17] J.Li and M.Ostoja‐Starzewski, Fractal solids, product measures and fractional wave equations, Proc. R. Soc. Lond. A465, 2521-2536 (2009); Errata (2010). · Zbl 1186.74011
[18] J.Li and M.Ostoja‐Starzewski, Fractal Solids, Product Measures and Continuum Mechanics, Chap. 33 in: Mechanics of Generalized Continua: One Hundred Years After the Cosserats, edited by G. A. Maugin and A. V. Metrikine (Springer, Berlin, Heidelberg, New York, 2010), pp. 315-323.
[19] J.Li and M.Ostoja‐Starzewski, Micropolar continuum mechanics of fractal media (A.C. Eringen special issue), Int. J. Eng. Sci. 49, 1302-1310 (2011). · Zbl 1423.74040
[20] J.Ignaczak and M.Ostoja‐Starzewski, Thermoelasticity with Finite Wave Speeds (Oxford University Press, Oxford, 2009).
[21] R.Temam and A.Miranville, Mathematical Modeling in Continuum Mechanics (Cambridge University Press, Cambridge, 2005). · Zbl 1077.76001
[22] G.Jumarie, On the representation of fractional Brownian motion as an integral with respect to (dt)^a, Appl. Math. Lett.18, 739-748 (2005). · Zbl 1082.60029
[23] A.Carpinteri, B.Chiaia, and P.A.Cornetti, A disordered microstructure material model based on fractal geometry and fractional calculus, Z. Angew. Math. Phys.84, 128-135 (2004). · Zbl 1254.74009
[24] P.N.Demmie and M.Ostoja‐Starzewski, Waves in fractal media, J. Elast.104, 187-204, 2011. · Zbl 1311.74057
[25] K.B.Oldham and J.Spanier, The Fractional Calculus (Academic Press, San Diego, 1974). · Zbl 0292.26011
[26] M.Ostoja‐Starzewski, Electromagnetism on anisotropic fractal media, Z. Angew. Math. Phys., online (2012).
[27] D.Stoyan and H.Stoyan, Fractals, Random Shapes and Point Fields (John Wiley & Sons, Chichester, 1994). · Zbl 0828.62085
[28] H.Ziegler, An Introduction to Thermomechanics (North‐Holland, Amsterdam, 1983). · Zbl 0531.73080
[29] A.Carpinteri and N.Pugno, Are scaling laws on strength of solids related to mechanics or to geometry? Nature Mater. 4, 421-423 (2005).
[30] W.Nowacki, Theory of Asymmetric Elasticity (Pergamon Press, Oxford, 1986); (PWN - Polish Sci. Publ., Warsaw. 1986). · Zbl 0604.73020
[31] H.Joumaa, M.Ostoja‐Starzewski, and P.N.Demmie, Elastodynamics in micropolar fractal solids, Math. Mech. Solids, online doi: 10.1177/1081286512454557 (2012). · Zbl 1302.74124
[32] H.Joumaa and M.Ostoja‐Starzewski, On the dilatational wave motion in anisotropic fractal solids (C. Christov special issue), Math. Comp. in Simulation, in review.
[33] K.F.Graff, Wave Motion in Elastic Solids (Dover Publ., New York, 1975). · Zbl 0314.73022
[34] T.J.R.Hughes, The Finite Element Method (Dover Publ., New York, 2000). · Zbl 1191.74002
[35] C.Rymarz, Mechanics of Continuous Media (PWN - Polish Sci. Publ., Warsaw. 1993).
[36] E.E.Gdoutos, Fracture Mechanics: an Introduction, (Kluwer Academic Publishers, Dordrecht, 1993). · Zbl 0834.73056
[37] M.Ostoja‐Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials, (CRC Press, Boca Raton, 2008). · Zbl 1148.74002
[38] M.Ostoja‐Starzewski, Fracture of brittle micro‐beams, ASME J. Appl. Mech.71, 424-427 (2004). · Zbl 1111.74584
[39] A.S.Balankin, O.Susarrey, C.A.Mora Santos, J.Patíno, A.Yogues, and E.I.García, Stress concentration and size effect in fracture of notched heterogeneous material, Phys. Rev. E83, 015101(R) (2011).
[40] B.B.Mandelbrot, D.E.Passoja, and A.J.Paullay, Fractal character of fracture surfaces of metals, Nature308, 721-722 (1984).
[41] A.M.Brandt and G.Prokopski, On the fractal dimension of fracture surfaces of concrete elements, J. Mater. Sci.28, 4762-4766 (1993).
[42] M.A.Issa, M.A.Issa, Md.S.Islam, and A.Chudnovsky, Fractal dimension – a measure of fracture roughness and toughness of concrete, Eng. Fract. Mech.70, 125-137 (2003).
[43] F.M.Borodich, Fractals and fractal scaling in fracture mechanics, Int. J. Fract.95(1-4), 239-259, (1999).
[44] A.Carpinteri, Scaling laws and renormalization groups for strength and toughness of disordered materials, Int. J. Solids Struct.31(3), 291-302 (1994). · Zbl 0807.73050
[45] A.Carpinteri and B.Chiaia, Multifractal scaling laws in the breaking behaviour of disordered materials, Chaos, Solitons, Fractals8(2)135-150 (1997). · Zbl 0919.58058
[46] M.P.Wnuk and A.Yavari, On estimating stress intensity factors and modulus of cohesion for fractal cracks, Eng. Fract. Mech. 70(13), 1659-1674 (2003).
[47] M.P.Wnuk and A.Yavari, A correspondence principle for fractal and classical cracks, Eng. Fract. Mech. 72(18), 2744-2757 (2005).
[48] M.P.Wnuk and A.Yavari, Discrete fractal fracture mechanics, Eng. Fract. Mech.75(5), 1127-1142 (2008).
[49] M.P.Wnuk and A.Yavari, A discrete cohesive model for fractal cracks, Eng. Fract. Mech. 76(4), 1127-1142 (2009).
[50] H.Khezrzadeh, M.P.Wnuk, and A.Yavari, Influence of material ductility and crack surface roughness on fracture instability, J. Phys. D, Appl. Phys. 44, 395302 (22p) (2011).
[51] A.S.Balankin and B.E.Elizarraraz, Hydrodynamics of fractal continuum flow, Phys. Rev. E85, 025302(R) (2012).
[52] A.S.Balankin and B.E.Elizarraraz, Map of fluid flow in fractal porous medium into fractal continuum flow, Phys. Rev. E85, 0256314(R) (2012).
[53] W.Chen, Time‐space fabric underlying anomalous diffusion, Chaos Solitons Fractals28, 923-929 (2006). · Zbl 1098.60078
[54] T.M.Michelitsch, G.A.Maugin, F.C.G.A.Nicolleau, A.F.Nowakowski, and S.Derogar, Dispersion relations and wave operators in self‐similar quasi‐cotninuous linear chains, Phys. Rev. E80, 011135 (2009).
[55] T.M.Michelitsch, G.A.Maugin, M.Rahman, S.Derogar, A.F.Nowakowski, and F.C.G.A.Nicolleau, An approach to generalized one‐dimensional self‐similar elasticity, Int. J. Eng. Sci.61, 103-111 (2012). · Zbl 1423.74102
[56] T.M.Michelitsch, G.A.Maugin, M.Rahman, S.Derogar, A.F.Nowakowski, and F.C.G.A.Nicolleau, A self‐similar field theory for 1D linear elastic continua and some applications to dynamic problems of wave propagation and diffusion, Eur. J. Appl. Math., in press (2012).
[57] T.M.Michelitsch, The self‐similar field and its application to a diffusion problem, J. Phys. A, Math. Theor.44, 4665206 (2011). · Zbl 1233.35003
[58] M.Epstein and J.Śniatycki, Fractal mechanics, Physica D220, 54-68 (2006). · Zbl 1098.74008
[59] M.Epstein and J.Śniatycki, Fractal mechanics, Int. J. Solids Struct.45, 3238-3254 (2008). · Zbl 1169.74333
[60] M.Epstein and J.Śniatycki, Fractal elements, JoMMS4(5), 781-797 (2009).
[61] E.Baskin and A.Iomin, Electrostatics in fractal geometry: Fractional calculus approach, Chaos Solitons Fractals44, 335-341 (2011). · Zbl 1221.78016
[62] R.L.Bagley and P.J.Torvik, A theoretical basis for the application of fractional calulus to viscoelasticity, J. Rheol.27, 201 (1983). · Zbl 0515.76012
[63] Y.A.Rossikhin, Reflections on two parallel ways in the progress of fractional calculus in mechanics of solids, Appl. Mech. Rev.63, 010701 (2010).
[64] F.Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College Press, London, 2010). · Zbl 1210.26004
[65] Y.Z.Povstenko, Fractional heat conduction equation and associated thermal stresses, J. Thermal Stresses28, 83-102 (2005).
[66] H.H.Hilton, Generalized fractional derivative anisotropic viscoelastic characterization, Materials5, 169-191 (2012).
[67] C.S.Drapaca and S.Sivaloganathan, A fractional model of continuum mechanics, J. Elast.107(2), 105-123 (2012). · Zbl 1451.74219
[68] C.M.Ionescu, W.Kosiński, and R.S.De Keyser, Viscoelasticity and fractal structure in a model of human lungs, Arch. Mech.62(1), 21-48 (2010). · Zbl 1269.74153
[69] A.C.Eringen, Microcontinuum Field Theories (Springer, Berlin, Heidelberg, New York, 1999). · Zbl 0953.74002
[70] G.Sciarra, F.dell’Isola, and O.Coussy, Second gradient poromechanics, Int. J. Solids Struct. 44, 6607-6629 (2007). · Zbl 1166.74341
[71] G.Sciarra, F.dell’Isola, and K.Hutter, Dilatational and compacting behavior around a cylindrical cavern leached out in a solid‐fluid elastic rock salt, Int. J. Geomech. 5, 233-243 (2005).
[72] G.Sciarra, F.dell’Isola, and K.Hutter, A solid‐fluid mixture model allowing for solid dilatation under external pressure, Contin. Mech. Thermodyn. 13, 287-306 (2001). · Zbl 1134.74365
[73] G.Sciarra, F.Dell’Isola, N.Ianiro, and A.Madeo, A variational deduction of second gradient poroelasticity - I: General theory, J. Mech. Math. Struct.3, 507-526 (2008).
[74] J.Alibert, P.Seppecher, and F.dell’Isola, Truss modular beams with deformation energy depending on higher displacement gradients, Math. Mech. Solids8, 51-73 (2003). · Zbl 1039.74028
[75] A.Carcaterra and A.Akay, Theoretical foundations of apparent‐damping phenomena and nearly irreversible energy exchange in linear conservative systems, J. Acoust. Soc. Am.121(4), 1971-1982 (2007).
[76] A.Carcaterra and A.Akay, Dissipation in a finite‐size bath, Phys. Rev. E84, 011121 (2011).
[77] P.Seppecher, Thermodynamique des zones capillaires, Ann. Phys. (France)13, 13-22 (1988).
[78] P.Seppecher, Etude des conditions aux limites en théorie du second gradient: cas de la capillarité, C.R. Acad. Sci. II309, 497-502, (1989). · Zbl 0672.76004
[79] P.Seppecher, Equilibrium of a Cahn and Hilliard fluid on a wall: Influence of the wetting properties of the fluid upon the stability of a thin liquid film, Eur. J. Mech. B, Fluids12(1), 69-84 (1993). · Zbl 0766.76034
[80] P.Seppecher, A numerical study of a moving contact line in Cahn‐Hilliard theory, Int. J. Eng. Sci.34(9), 977-992 (1996). · Zbl 0899.76042
[81] P.Seppecher, Second‐Gradient Theory: Application to Cahn‐Hilliard Fluids, in: Continuum Thermomechanics: The Art and Science of Modeling Matter’s Behaviour, edited by G. A. Maugin et al. (Kluwer, Dordrecht, 2000), pp. 43-54.
[82] F.dell’Isola, A.Madeo, and L.Placidi, Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua, Z. Angew. Math. Mech.92(1), 52-71 (2012). · Zbl 1247.74031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.