×

Determination of compactly supported functions in shift-invariant space by single-angle Radon samples. (English) Zbl 1522.94022

Summary: While traditionally the computerized tomography of a function \(f \in L^2 (\mathbb{R}^2)\) depends on the samples of its Radon transform at multiple angles, the real-time imaging sometimes requires the reconstruction of \(f\) by the samples of its Radon transform \(\mathcal{R}_{\mathfrak{p}} f\) at a single angle \(\theta\), where \(\mathfrak{p} = (\cos \theta, \sin \theta)\) is the direction vector. This naturally leads to the question of identifying those functions that can be determined by their Radon samples at a single angle \(\theta\). The shift-invariant space \(V(\varphi, \mathbb{Z}^2)\) generated by \(\varphi\) is a type of function space that has been widely considered in many fields including wavelet analysis and signal processing. In this paper we examine the single-angle reconstruction problem for compactly supported functions \(f \in V(\varphi, \mathbb{Z}^2)\). The central issue for the problem is to identify the eligible \(\mathfrak{p}\) and sampling set \(X_{\mathfrak{p}} \subseteq \mathbb{R}\) such that \(f\) can be determined by its single-angle Radon (w.r.t. \(\mathfrak{p}\)) samples at \(X_{\mathfrak{p}}\). For the general generator \(\varphi\), we address the eligible \(\mathfrak{p}\) for the two cases: (1) \(\varphi\) being nonvanishing \((\int_{\mathbb{R}^2} \varphi(\mathfrak{x}) d \mathfrak{x} \neq 0)\) and (2) being vanishing \((\int_{\mathbb{R}^2} \varphi (\mathfrak{x}) d \mathfrak{x} = 0)\). We prove that eligible \(X_{\mathfrak{p}}\) exists for general \(\varphi\). In particular, \(X_{\mathfrak{p}}\) can be explicitly constructed if \(\varphi \in C^1(\mathbb{R}^2)\). Positive definite functions form an important class of functions that have been widely applied in scattered data interpolation. For the case that \(\varphi\) is positive definite, the corresponding single-angle problem in SIS \(V(\varphi, \mathbb{Z}^2)\) is addressed such that \(X_{\mathfrak{p}}\) can be constructed easily. Besides using the samples of the single-angle Radon transform, another common feature for our recovery results is that the number of the required samples is minimum.

MSC:

94A20 Sampling theory in information and communication theory
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
44A12 Radon transform
65T60 Numerical methods for wavelets
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
92C55 Biomedical imaging and signal processing
94A12 Signal theory (characterization, reconstruction, filtering, etc.)

References:

[1] Aldroubi, A.; Gröchenig, K., Nonuniform sampling and reconstruction in shift-invariant spaces, SIAM Rev., 43, 585-620 (2001) · Zbl 0995.42022
[2] Aldroubi, A.; Sun, Q.; Tang, W. S., Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces, J. Fourier Anal. Appl., 11, 215-244 (2005) · Zbl 1095.42022
[3] Antipa, N.; Kuo, G.; Heckel, R.; Mildenhall, B.; Bostan, E.; Ng, R.; Waller, L., DiffuserCam: lensless single-exposure 3D imaging, Optica, 5, 1-9 (2018)
[4] Bhandari, A.; Zayed, A. I., Shift-invariant and sampling spaces associated with the fractional Fourier transform domain, IEEE Trans. Signal Process., 60, 1627-1637 (2012) · Zbl 1393.94672
[5] Bochner, S., Monotone Funktionen, Stieltjes Integrale und harmonische Analyse, Math. Ann., 108, 378-410 (1933) · JFM 59.0272.01
[6] Chui, C. K., An Introduction to Wavelets (1992), Academic Press · Zbl 0925.42016
[7] Derikvand, T.; Kamyabi-Gol, R. A.; Janfada, M., The Radon transform on function spaces related to homogenous spaces (2017)
[8] Entezari, A.; Nilchian, M.; Unser, M., A box spline calculus for the discretization of computed tomography reconstruction problems, IEEE Trans. Med. Imaging, 31, 1532-1541 (2012)
[9] Fan, S.; S-Dryden, S.; Zhao, J.; Gausmann, S.; Schülzgen, A.; Li, G.; Saleh, B., Optical fiber refractive index profiling by iterative optical diffraction tomography, J. Lightwave Technol., 36, 5754-5763 (2018)
[10] Fan, S.; S-Dryden, S.; Li, G.; Saleh, B., Reconstructing complex refractive-index of multiply-scattering media by use of iterative optical diffraction tomography, Opt. Express, 28, 6846-6858 (2020)
[11] Feris, R. S.; Krueger, V.; Junior, R. M.C., A wavelet subspace method for real-time face tracking, Real-Time Imaging, 10, 339-350 (2004)
[12] Flynn, S., Injectivity of the Heisenberg X-ray transform, J. Funct. Anal., 280, Article 108886 pp. (2021) · Zbl 1458.53040
[13] Gauthier, P. M., Lectures on Several Complex Variables (2014), Springer: Springer Cham · Zbl 1310.32001
[14] Hamm, K.; Ledford, J., On the structure and interpolation properties of quasi shift-invariant spaces, J. Funct. Anal., 274, 1959-1992 (2018) · Zbl 1391.46036
[15] Han, B.; Shen, Z., Dual wavelet frames and Riesz bases in Sobolev spaces, Constr. Approx., 29, 369-406 (2009) · Zbl 1161.42018
[16] Han, B., The projection method for multidimensional framelet and wavelet analysis, Math. Model. Nat. Phenom., 7, 32-59 (2012)
[17] Han, B., Projectable multidimensional refinable functions and biorthogonal wavelets, Appl. Comput. Harmon. Anal., 13, 89-102 (2002) · Zbl 1034.42036
[18] Han, B., Framelets and Wavelets: Algorithms, Analysis, and Applications, Applied and Numerical Harmonic Analysis (2017), Birkhäuser/Springer: Birkhäuser/Springer Cham, xxxiii +724 pp · Zbl 1387.42001
[19] Helgason, S., Integral Geometry and Radon Transform (2011), Springer: Springer New York · Zbl 1210.53002
[20] Hinrichs, A.; Vybíral, J., On positive positive-definite functions and Bochner’s Theorem, J. Complex., 27, 264-272 (2011) · Zbl 1242.41028
[21] Homan, A.; Zhou, H., Injectivity and stability for a generic class of generalized Radon transforms, J. Geom. Anal., 27, 1515-1529 (2017) · Zbl 1377.44003
[22] Horisaki, R.; Fujii, K.; Tanida, J., Diffusion-based single-shot diffraction tomography, Opt. Lett., 44, 1964-1967 (2019)
[23] Ilmavirta, J., On Radon transforms on tori, J. Fourier Anal. Appl., 21, 370-382 (2015) · Zbl 1331.46029
[24] Kak, A. C.; Slaney, M., Principles of Computerized Tomographic Imaging (2001), SIAM: SIAM Philadelphia, PA · Zbl 0984.92017
[25] Karimi, N.; Kazem, S.; Ahmadian, D.; Adibi, H.; Ballestra, L. V., On a generalized Gaussian radial basis function: analysis and applications, Eng. Anal. Bound. Elem., 112, 46-57 (2020) · Zbl 1464.65013
[26] Kim, M. K., Principles and techniques of digital holographic microscopy, SPIE Rev., 1, 1-51 (2010)
[27] Li, Y.; Han, D.; Yang, S.; Huang, G., Nonuniform sampling and approximation in Sobolev space from the perturbation of framelet system, Sci. China Math., 64, 351-372 (2021) · Zbl 1477.42034
[28] Li, Y.; Yang, S.; Yuan, D., Bessel multiwavelet sequences and dual multiframelets in Sobolev spaces, Adv. Comput. Math., 38, 491-529 (2013) · Zbl 1263.42023
[29] McCann, M. T.; Unser, M., High-quality parallel-ray X-ray CT back projection using optimized interpolation, IEEE Trans. Image Process., 26, 4639-4647 (2017) · Zbl 1409.94437
[30] Müller, P.; Schürmann, M.; Guck, J., The theory of diffraction tomography (2015)
[31] Natterer, F., The Mathematics of Computerized Tomography, Classics Appl. Math., vol. 32 (2001), SIAM: SIAM Philadelphia, PA · Zbl 0973.92020
[32] Natterer, F.; Wübbeling, F., Mathematical Methods in Image Reconstruction (2001), SIAM: SIAM Philadelphia, PA · Zbl 0974.92016
[33] Niinimäki, K.; Siltanen, S.; Kolehmainen, V., Bayesian multiresolution method for local tomography in dental x-ray imaging, Phys. Med. Biol., 52, 6663-6678 (2007)
[34] Nilchian, M.; Ward, J. P.; Vonesch, C.; Unser, M., Optimized Kaiser-Bessel window functions for computed tomography, IEEE Trans. Image Process., 24, 3826-3833 (2015) · Zbl 1408.94511
[35] Rantala, M.; Vänskä, S.; Järvenpää, S.; Kalke, M.; Lassas, M.; Moberg, J.; Siltanen, S., Wavelet-based reconstruction for limited-angle X-ray tomography, IEEE Trans. Med. Imaging, 25, 210-217 (2006)
[36] Stein, E. M.; Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces (1971), Princeton Univ. Press: Princeton Univ. Press Princeton · Zbl 0232.42007
[37] Stéphane, M., A Wavelet Tour of Signal Processing (2009), Elsevier Inc. · Zbl 1170.94003
[38] Sun, Q., Local reconstruction for sampling in shift-invariant spaces, Adv. Comput. Math., 32, 335-352 (2010) · Zbl 1192.94079
[39] Sun, W., Local sampling theorems for spaces generated by splines with arbitrary knots, Math. Comput., 78, 225-239 (2009) · Zbl 1198.65259
[40] Sun, W.; Zhou, X., Characterization of local sampling sequences for spline subspaces, Adv. Comput. Math., 30, 153-175 (2009) · Zbl 1173.41006
[41] Sun, W., Local and global phaseless sampling in real spline spaces, Math. Comput., 90, 335-352 (2020)
[42] Wendland, H., Scattered Data Approximation, vol. 17 (2004), Cambridge University Press
[43] Xu, Y., A new approach to the reconstruction of images from Radon projections, Adv. Appl. Math., 36, 388-420 (2006) · Zbl 1133.42010
[44] Yablon, A. D., Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy, J. Lightwave Technol., 28, 360-364 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.