×

Bessel multiwavelet sequences and dual multiframelets in Sobolev spaces. (English) Zbl 1263.42023

Summary: The dual \(2I_d\)-framelets in \( (H^s(\mathbb R^d), H^{-s}(\mathbb R^d)), s>0\), were introduced by B. Han and Z. Shen [Constr. Approx. 29, No. 3, 369–406 (2009; Zbl 1161.42018)]. In this paper, we systematically study the Bessel property of multiwavelet sequences in Sobolev spaces. The conditions for Bessel multiwavelet sequences in \( H^{-s}(\mathbb R^d) \) take great difference from those for Bessel wavelet sequences in this space. Precisely, the Bessel property of a multiwavelet sequence in \( H^{-s}(\mathbb R^d) \) is not only related to the multiwavelets themselves but also to the corresponding refinable function vector. We construct a class of Bessel \(M\)-refinable function vectors with \(M\) being an isotropic dilation matrix, which have high Sobolev smoothness, and the mask symbols of which have high sum rules. Based on the constructed Bessel refinable function vector, an explicit algorithm is given for dual \(M\)-multiframelets in \( (H^s(\mathbb R^d),H^{-s}(\mathbb R^d)) \) with multiframelets in \( H^{-s}(\mathbb R^d) \) having high vanishing moments. On the other hand, based on the dual multiframelets, an algorithm for dual \(M\)-multiframelets with symmetry is given. In Section 6, we give an example to illustrate the construction procedures of dual multiframelets.

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
42C15 General harmonic expansions, frames
94A12 Signal theory (characterization, reconstruction, filtering, etc.)

Citations:

Zbl 1161.42018
Full Text: DOI

References:

[1] Belogay, E., Wang, Y.: Arbitrary smooth orthogonal nonseparable wavelets in \(\mathbb{R}^s \). SIAM J. Math. Anal. 30(3), 678-697 (1999) · Zbl 0946.42025 · doi:10.1137/S0036141097327732
[2] Bownik, M.: A characterization of affine dual frames in \(L^2(\mathbb{R}^n) \). Appl. Comput. Harmon. Anal. 8, 203-221 (2000) · Zbl 0961.42018 · doi:10.1006/acha.2000.0284
[3] Cohen, A., Daubechies, I.: Nonseparable bidimensional wavelet bases. Rev. Mat. Iberoam. 9, 51-137 (1993) · Zbl 0792.42021 · doi:10.4171/RMI/133
[4] Daubechies, I., Han, B.: Pairs of dual wavelet frames from any two refinable functions. Constr. Approx. 20, 325-352 (2004) · Zbl 1055.42025 · doi:10.1007/s00365-004-0567-4
[5] Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14, 1-46 (2003) · Zbl 1035.42031 · doi:10.1016/S1063-5203(02)00511-0
[6] Ehler, M.: On multivariate compactly supported bi-frames. J. Fourier Anal. Appl. 13, 511-532 (2007) · Zbl 1141.42021 · doi:10.1007/s00041-006-6021-1
[7] Ehler, M.: The Construction of Nonseparable Wavelet Bi-Frames and Associated Approximation Schemes. Logos Verlag, Berlin (2007) · Zbl 1189.65004
[8] Ehler, M., Han, B.: Wavelet bi-frames with few generators from multivariate refinable functions. Appl. Comput. Harmon. Anal. 25, 407-414 (2008) · Zbl 1221.42062 · doi:10.1016/j.acha.2008.04.003
[9] Han, B.: On dual wavelet tight frames. Appl. Comput. Harmon. Annal. 4, 380-413 (1997) · Zbl 0880.42017 · doi:10.1006/acha.1997.0217
[10] Han, B.: Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J. Approx. Theory 110, 18-53 (2001) · Zbl 0986.42020 · doi:10.1006/jath.2000.3545
[11] Han, B.: Symmetry property and construction of wavelets with a general dilation matrix. Linear Algebra Appl. 353, 207-225 (2002) · Zbl 0999.42020 · doi:10.1016/S0024-3795(02)00307-5
[12] Han, B.: Vector cascade algorithms and refinable function vectors in Sobolev spaces. J. Approx. Theory 124, 44-88 (2003) · Zbl 1028.42019 · doi:10.1016/S0021-9045(03)00120-5
[13] Han, B.: Construction of wavelets and framelets by the projection method. Int. J. Appl. Math. Appl. 1, 1-40 (2008) · Zbl 1148.42012
[14] Han, B.: Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26, 14-42 (2009) · Zbl 1154.42007 · doi:10.1016/j.acha.2008.01.002
[15] Han, B.: Bivariate (Two-dimensional) wavelets. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 9, pp. 589-599 (2009) · Zbl 1180.42004
[16] Han, B.: The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets. Math. Comput. 79, 917-951 (2010) · Zbl 1247.42040
[17] Han, B., Jia, Q.: Quincunx fundamental refinable functions and quincunx biorthogonal wavelets. Math. Comput. 237, 165-196 (2002) · Zbl 0980.42032
[18] Han, B., Mo, Q.: Multiwavelet frames from refinable function vectors. Adv. Comput. Math. 18, 211-245 (2003) · Zbl 1059.42030 · doi:10.1023/A:1021360312348
[19] Han, B., Shen, Z.: Characterization of Sobolev spaces of arbitrary smoothness using nonstationary tight wavelet frames. Isr. J. Math. 172, 371-398 (2009) · Zbl 1180.42004 · doi:10.1007/s11856-009-0079-9
[20] Han, B., Shen, Z.: Dual wavelet frames and Riesz bases in Sobolev spaces. Constr. Approx. 29(3), 369-406 (2009) · Zbl 1161.42018 · doi:10.1007/s00365-008-9027-x
[21] Han, B., Zhuang, X.: Analysis and construction of multivariate interpolating refinable function vectors. Acta Appl. Math. 107, 143-171 (2009) · Zbl 1175.42020 · doi:10.1007/s10440-008-9399-8
[22] Heil, C., Colella, D.: Matrix refinement equations: existence and uniqueness. J. Fourier Anal. Appl. 2, 363-377 (1996) · Zbl 0904.39017
[23] Jia, R.: Bessel sequences in Sobolev spaces. Appl. Comput. Harmon. Anal. 20, 298-311 (2006) · Zbl 1097.46008 · doi:10.1016/j.acha.2005.11.001
[24] Li, Y., Yang, S.: Construction of nonseparable dual Ω-wavelet frames in \(L^2(\mathbb{R}^s) \). Appl. Math. Comput. 215, 2082-2094 (2009) · Zbl 1183.65180 · doi:10.1016/j.amc.2009.08.008
[25] Li, Y., Yang, S.: Explicit construction of symmetric orthogonal wavelet frames in \(L^2(\mathbb{R}^s) \). J. Approx. Theory 162, 891-909 (2010) · Zbl 1194.42044 · doi:10.1016/j.jat.2009.10.002
[26] Li, Y., Yang, S.: Multiwavelet sampling theorem in Sobolev spaces. Sci. China Math. 53(12), 3197-3214 (2010) · Zbl 1206.42035 · doi:10.1007/s11425-010-4082-8
[27] Li, Y., Yang, S.: Dual multiwavelet frames with symmetry from two-direction refinable functions. Bull. Iran. Math. Soc. 37(1), 199-214 (2011) · Zbl 1270.42031
[28] Petukhov, A.: Symmetric framelets. Constr. Approx. 19, 309-328 (2003) · Zbl 1037.42038 · doi:10.1007/s00365-002-0522-1
[29] Ron, A., Shen, Z.: Affine systems in \(L^2(\mathbb{R}^n) \): the analysis of the analysis operator. J. Funct. Anal. 148, 380-413 (1997) · Zbl 0891.42018 · doi:10.1006/jfan.1996.3079
[30] Ron, A., Shen, Z.: Affine systems in \(L^2(\mathbb{R}^n) \): dual systems. J. Funct. Anal. 3, 617-637 (1997) · Zbl 0904.42025
[31] Yang, S., Li, Y.: Two-direction refinable functions and two-direction wavelets with high approximation order and regularity. Sci. China Ser. A. 50(12), 1687-1704 (2007) · Zbl 1137.42012 · doi:10.1007/s11425-007-0091-7
[32] Yang, S., Li, Y.: Two-direction refinable functions and two-direction wavelets with dilation factor m. Appl. Math. Comput. 188(2), 1908-1920 (2007) · Zbl 1132.65120 · doi:10.1016/j.amc.2006.11.078
[33] Yang, S., Li, Y.: Construction of multiwavelets with high approximation order and symmetry. Sci. China Ser. A. 52(8), 1607-1616 (2009) · Zbl 1176.42024 · doi:10.1007/s11425-009-0068-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.