×

Bayesian empirical likelihood estimation of quantile structural equation models. (English) Zbl 1370.93304

Summary: Structural equation model (SEM) is a multivariate analysis tool that has been widely applied to many fields such as biomedical and social sciences. In the traditional SEM, it is often assumed that random errors and explanatory latent variables follow the normal distribution, and the effect of explanatory latent variables on outcomes can be formulated by a mean regression-type structural equation. But this SEM may be inappropriate in some cases where random errors or latent variables are highly nonnormal. The authors develop a new SEM, called as quantile SEM (QSEM), by allowing for a quantile regression-type structural equation and without distribution assumption of random errors and latent variables. A Bayesian empirical likelihood (BEL) method is developed to simultaneously estimate parameters and latent variables based on the estimating equation method. A hybrid algorithm combining the Gibbs sampler and Metropolis-Hastings algorithm is presented to sample observations required for statistical inference. Latent variables are imputed by the estimated density function and the linear interpolation method. A simulation study and an example are presented to investigate the performance of the proposed methodologies.

MSC:

93E12 Identification in stochastic control theory
93E10 Estimation and detection in stochastic control theory
93C05 Linear systems in control theory

Software:

LISREL
Full Text: DOI

References:

[1] Jöreskog K G, A general method for estimating a linear structural equation system, Eds. by Goldberger E S and Duncan O D, Structural Equation Models in the Social Sciences, Seminar Press, New York, 1973, 85-112.
[2] Jöreskog K G and Sörbom D, LISREL 8: Structural Equation Moldeling with the SIMPLIS Command Language, Scientific Software International, Hove adn London, 1996.
[3] Skrondal A and Rabe-Hesketh S, Generalized Latent Variable Modeling: Multilevel, Longitudinal and Structural Equation Models, Chapman & Hall/CRC, Boca Raton, FL, 2004. · Zbl 1097.62001 · doi:10.1201/9780203489437
[4] Lee S Y, Structural Equation Modeling: A Bayesian Approach, John Wiley & Sons, Ltd, Chichester, UK, 2007. · Zbl 1154.62022 · doi:10.1002/9780470024737
[5] Wang Y F, Feng X N, and Song X Y, Bayesian quantile structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 2016, 23: 246-258. · doi:10.1080/10705511.2015.1033057
[6] Lee S Y and Zhu H, Maximum likelihood estimation of nonlinear structural equation models. Psychometrika, 2002, 67: 189-210. · Zbl 1297.62043 · doi:10.1007/BF02294842
[7] Lee S Y and Tang N S, Analysis of nonlinear structural equation models with nonignorable missing covaariates and ordered categorical data. Statistica Sinica, 2006, 16: 1117-1141. · Zbl 1110.62034
[8] Cai J H, Song X Y, and Hser Y I, A Bayesian analysis of mixture structural equation models with nonignorable missing responses and covariates, Statistics in Medicine, 2010, 29: 1861-1874. · doi:10.1002/sim.3915
[9] Song X Y, Lu Z, Hser Y I, et al., A Bayesian approach for analyzing longitudinal structural equation models, Structural Equation modeling: A Multidisciplinary Journal, 2011, 18: 183-194. · doi:10.1080/10705511.2011.557331
[10] Guo R X, Zhu H T, Chow S M, et al., Bayesian lasso for semiparametric structural equation models, Biometrics, 2012, 68: 567-577. · Zbl 1274.62781 · doi:10.1111/j.1541-0420.2012.01751.x
[11] Koenker R, Quantile Regression, Cambridge University Press, New York, 2005. · Zbl 1111.62037 · doi:10.1017/CBO9780511754098
[12] Yu K and Moyeed R A, Bayesian quantile regression. Statistics & Probability Letters, 2001, 54: 437-447. · Zbl 0983.62017 · doi:10.1016/S0167-7152(01)00124-9
[13] Dunson D B and Taylor J A, Approximate Bayesian inference for quantiles. Journal of Nonparametric Statistics, 2005, 17: 385-400. · Zbl 1061.62051 · doi:10.1080/10485250500039049
[14] Kottas A and Krnjajić M, Bayesian semiparametric modelling in quantile regression. Scandinavian Journal of Statistics, 2009, 36: 297-319. · Zbl 1190.62053 · doi:10.1111/j.1467-9469.2008.00626.x
[15] Reich B J, Bondell H D, and Wang H J, Flexible Bayesian quantile regression for independent and clustered data. Biostatistics, 2010, 11: 337-352. · Zbl 1437.62589 · doi:10.1093/biostatistics/kxp049
[16] Lancaster T and Sung J J, Bayesian quantile regression methods. Journal of Applied Econometrics, 2010, 25: 287-307. · doi:10.1002/jae.1069
[17] Yang Y and He X, Bayesian empirical likelihood for quantile regression. The Annals of Statistics, 2012, 40: 1102-1131. · Zbl 1274.62458 · doi:10.1214/12-AOS1005
[18] Feng X N, Wang G C, Wang Y F, et al., Structure detection of semiparametric structural equation models with bayesian adaptive group lasso, Statistics in Medicine, 2015, 34: 1527-1547. · doi:10.1002/sim.6410
[19] Lazar N A, Bayesian empirical likelihood. Biometrika, 2003, 90: 319-326. · Zbl 1034.62020 · doi:10.1093/biomet/90.2.319
[20] Schennach S, Bayesian exponentially tilted empirical likelihood. Biometrika, 2005, 92: 31-46. · Zbl 1068.62035 · doi:10.1093/biomet/92.1.31
[21] Fang K T and Mukerjee R, Empirical-type likelihoods allowing posterior credible sets with frequentist validity: Higher-order asymptotics. Biometrika, 2006, 93: 723-733. · Zbl 1109.62022 · doi:10.1093/biomet/93.3.723
[22] Chang I H and Mukerjee R, Bayesian and frequentist confidence intervals arising from empiricaltype likelihoods. Biometrika, 2008, 95: 139-147. · Zbl 1437.62410 · doi:10.1093/biomet/asm088
[23] Mukerjee R, Data-dependent probability matching priors for empirical and related likelihoods, Pushing the Limits of Contempo-rary Statistics: Contributions in Honor of Jayanta K. Ghosh, Institute of Mathematical Statistics, 2008, 3: 60-70. · Zbl 1159.62004
[24] Grendár M and Judge G, Asymptotic equivalence of empirical likelihood and bayesian map. The Annals of Statistics, 2009, 37: 2445-2457. · Zbl 1173.62014 · doi:10.1214/08-AOS645
[25] Rao J and Wu C, Bayesian pseudo-empirical-likelihood intervals for complex surveys. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2010, 72: 533-544. · Zbl 1411.62034 · doi:10.1111/j.1467-9868.2010.00747.x
[26] Chaudhuri S and Ghosh M, Empirical likelihood for small area estimation. Biometrika, 2011, 98: 473-480. · Zbl 1215.62031 · doi:10.1093/biomet/asr004
[27] Song X Y and Lee S Y, Basic and Advanced Bayesian Structural Equation Modeling: With Applications in the Medical and Behavioral Sciences, John Wiley & Sons, Ltd, Chichester, 2012. · Zbl 1282.62056 · doi:10.1002/9781118358887
[28] Owen A B, Empirical Likelihood, Chapman & Hall, New York, 2001. · Zbl 0989.62019 · doi:10.1201/9781420036152
[29] Wei Y, Ma Y Y, and Carroll R J, Multiple imputation in quantile regression. Biometrika, 2012, 99: 423-438. · Zbl 1239.62085 · doi:10.1093/biomet/ass007
[30] Chen J, Sitter R R, and Wu C, Using empirical likelihood methods to obtain range restricted weights in regression estimators for surveys. Biometrika, 2002, 89: 230-237. · Zbl 0997.62008 · doi:10.1093/biomet/89.1.230
[31] Gelman A, Inference and Monitoring Convergence in Markov Chain Monte Carlo in Practice, Chapman & Hall, London, 1996.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.