×

A continuous-discrete finite memory observer design for a class of nonlinear systems: application to fault diagnosis. (English) Zbl 1459.93059

Summary: This paper aims to develop a continuous-discrete finite memory observer (CD-FMO) for a class of nonlinear dynamical systems modeled by ordinary differential equations (ODEs) with discrete measurements. The nonlinear systems under consideration are at least locally Lipschitz, which guarantees the existence and uniqueness of solution at each time instant. The proposed nonlinear observer uses a finite number of collected measurements to estimate the system state in the presence of measurement noise. Besides, a one-step prediction algorithm incorporated with an iterative-update scheme is performed to solve the integral problem caused by system nonlinearity, and an analysis of the numerical integration approximation error is given. The properties of estimation performance have been further proved in deterministic case and been analyzed by Monte Carlo simulation in stochastic cases. It is worth noting that the presented method has a finite-time convergence, while most nonlinear observers are usually asymptotically convergent. Another advantage of CD-FMO is that it has no initial value problem. For the application purpose, residuals are generated to implement fault detection cooperated with Cumulative Sum (CUSUM) control charts, while a bank of CD-FMOs is adopted to realize fault isolation for different sensor and actuator faults of the considered nonlinear robotic arm. The robustness and effectiveness of the proposed approach are illustrated via the simulation results.

MSC:

93B53 Observers
93B07 Observability
93C10 Nonlinear systems in control theory
93C43 Delay control/observation systems
93C73 Perturbations in control/observation systems
94C12 Fault detection; testing in circuits and networks
Full Text: DOI

References:

[1] Frank, P. M., Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy, Automatica, 26, 3, 459-474 (1990) · Zbl 0713.93052 · doi:10.1016/0005-1098(90)90018-d
[2] Dy Liacco, T. E., The role and implementation of state estimation in an energy management system, International Journal of Electrical Power & Energy Systems, 12, 2, 75-79 (1990) · doi:10.1016/0142-0615(90)90002-s
[3] Ali, S. A.; Christen, A.; Begg, S.; Langlois, N., Continuous-discrete time-observer design for state and disturbance estimation of electro-hydraulic actuator systems, IEEE Transactions on Industrial Electronics, 63, 7, 4314-4324 (2016) · doi:10.1109/tie.2016.2531022
[4] Krener, A. J.; Alberto, I., Linearization by output injection and nonlinear observers, Systems & Control Letters, 3, 1, 47-52 (1983) · Zbl 0524.93030 · doi:10.1016/0167-6911(83)90037-3
[5] Bestle, D.; Zeitz, M., Canonical form observer design for non-linear time-variable systems, International Journal of Control, 38, 2, 419-431 (1983) · Zbl 0521.93012 · doi:10.1080/00207178308933084
[6] Phanomchoeng, G.; Rajamani, R., Observer design for Lipschitz nonlinear systems using Riccati equations, Proceedings of the 2010 American Control Conference
[7] Huang, C.; Huang, H., Observer-based robust preview tracking control for a class of non-linear systems, IET Control Theory & Applications, 14, 7, 991-998 (2020) · doi:10.1049/iet-cta.2019.0922
[8] Dinh, T. N.; Andrieu, V.; Nadri, M.; Serres, U., Continuous-discrete time observer design for Lipschitz systems with sampled measurements, IEEE Transactions on Automatic Control, 60, 3, 787-792 (2015) · Zbl 1360.93121 · doi:10.1109/tac.2014.2329211
[9] Huang, J.; Yu, L.; Shi, M., Observer design for stochastic one-sided Lipschitz Lur’e differential inclusion system, International Journal of Computer Mathematics, 97, 3, 624-637 (2020) · Zbl 1479.34093 · doi:10.1080/00207160.2019.1584294
[10] Jazwinski, A. H., Stochastic Processes and Filtering Theory (2013), New York, NY, USA: Dover, New York, NY, USA · Zbl 0203.50101
[11] Ling, C.; Kravaris, C., Multirate sampled-data observer design based on a continuous-time design, IEEE Transactions on Automatic Control, 64, 12, 5265-5272 (2019) · Zbl 1482.93364 · doi:10.1109/tac.2019.2929295
[12] Farza, M.; M’Saad, M.; Djemai, M.; Defoort, M., Busawon K\enleadertwodots continuous-discrete-time observers for a class of uniformly observable systems, Hybrid Dynamical Systems. Lecture Notes in Control and Information Sciences, 457 (2015), Berlin, Germany: Springer, Berlin, Germany
[13] Han, X.; Li, Z.; Dahhou, B.; Cabassud, M.; He, M., Nonlinear observer based fault diagnosis for an innovative intensified heat-exchanger/reactor, Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019), Springer
[14] Bougatef, Z.; Abdelkrim, N.; Aitouche, A.; Abdelkrim, M. N., Fault detection of a PEMFC system based on delayed LPV observer, International Journal of Hydrogen Energy, 45, 19, 11233-11241 (2020) · doi:10.1016/j.ijhydene.2018.11.053
[15] Li, L.; Chadli, M.; Ding, S. X.; Qiu, J.; Yang, Y., Diagnostic observer design for T-S fuzzy systems: application to real-time-weighted fault-detection approach, IEEE Transactions on Fuzzy Systems, 26, 2, 805-816 (2018) · doi:10.1109/tfuzz.2017.2690627
[16] Toda, M.; Patel, R., Performance bounds for continuous-time filters in the presence of modeling errors, IEEE Transactions on Aerospace and Electronic Systems, 14, 6, 912-919 (1978) · doi:10.1109/taes.1978.308556
[17] Heffes, H., The effect of erroneous models on the Kalman filter response, IEEE Transactions on Automatic Control, 11, 3, 541-543 (1966) · doi:10.1109/tac.1966.1098392
[18] Graton, G.; Kratz, F.; Fantini, J., Finite Memory Observers for linear time-varying systems: theory and diagnosis applications, Journal of the Franklin Institute, 351, 2, 785-810 (2014) · Zbl 1293.93103 · doi:10.1016/j.jfranklin.2013.08.005
[19] Sorenson, H. W.; Sacks, J. E., Recursive fading memory filtering, Information Sciences, 3, 2, 101-119 (1971) · Zbl 0225.93041 · doi:10.1016/s0020-0255(71)80001-4
[20] Medvedev, A. V.; Toivonen, H. T., A Continuous Finite-Memory Deadbeat Observer (1992), Chicago, IL, USA: American Control Conference, Chicago, IL, USA
[21] Nuninger, W.; Kratz, F.; Ragot, J., Finite memory generalised state observer approach for failure detection in dynamic systems, Proceedings 37th IEEE Conference on Decision and Control
[22] Thuillier, J.; Delouche, D.; Fantini, J.; Kratz, F., Finite Memory Observer-based sensor fault detection and isolation for system when measurements are correlated with process noise, Safeprocess, 51, 24, 320-325 (2018) · doi:10.1016/j.ifacol.2018.09.596
[23] Kajdan, R.; Graton, G.; Aubry, D.; Kratz, F., fault detection of a nonlinear switching system using finite memory observer, IFAC Proceedings Volumes, 39, 13, 992-997 (2006) · doi:10.3182/20060829-4-cn-2909.00165
[24] Kou, S. R.; Tarn, T.; Elliott, D. L., Finite-time observer for nonlinear dynamic systems, Proceedings of the IEEE Conference on Decision and Control
[25] Atkinson, K. E., An Introduction to Numerical Analysis, 252-253 (1989), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0718.65001
[26] Mayer, C., Matrix Analysis and Applied Linear Algebra Book and Solutions Manuel (2001), Philadelphia, PA, USA: SIAM, Philadelphia, PA, USA
[27] Bellman, R., The stability of solutions of linear differential equations, Duke Mathematical Journal, 10, 4, 643-647 (1943) · Zbl 0061.18502 · doi:10.1215/s0012-7094-43-01059-2
[28] Zhang, X.; Polycarpou, M.; Parisini, T., Design and analysis of a fault isolation scheme for a class of uncertain nonlinear systems, Annual Reviews in Control, 32, 1, 107-121 (2008) · doi:10.1016/j.arcontrol.2008.03.007
[29] Montgomery, D. C., Introduction to Statistical Quality Control (2013), Hoboken, NJ, USA: Wiley, Hoboken, NJ, USA · Zbl 1266.62003
[30] Frank, P. M.; Tzafestas, S.; Singh, M.; Schmidt, G., Fault diagnosis in dynamic systems via state estimation-a survey, System Fault Diagnostics, Reliability and Related Knowledge-Based Approaches (1987), Dordrecht, PA, USA: Springer, Dordrecht, PA, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.