×

Observer design for stochastic one-sided Lipschitz Lur’e differential inclusion system. (English) Zbl 1479.34093

Summary: This paper presents an observer design for a stochastic one-sided Lipschitz Lur’e differential inclusion system. The feature of the system is that a nonlinear term satisfies one-sided Lipschitz condition and elements of a transition rates matrix are partially unknown. First, a framework of a Luenberger-type observer with stochastic switching parameters is presented. Then, the conditions which guarantee that the error system is exponentially stable in mean square are derived. Finally, the simulation with a rotor system is conducted to prove the effectiveness of the proposed observer design.

MSC:

34D20 Stability of solutions to ordinary differential equations
34H15 Stabilization of solutions to ordinary differential equations

Software:

LMITOOL
Full Text: DOI

References:

[1] Abbaszadeh, M. and Marquez, H., Nonlinear observer design for one-sided Lipschitz systems, in Proceedings of the American Control Conference, MD, 2010.
[2] Acary, V.; Brogliato, B., Numerical Methods for Non-smooth Dynamical Systems: Applications in Mechanics and Electronics (2008), Springer Verlag: Springer Verlag, Berlin Heidelberg · Zbl 1173.74001
[3] Baker, C.; Buckwar, E., Exponential stability in pth mean of solutions, and of convergent euler-type solutions, of stochasitic delay differential equations, J. Comput. Appl. Math., 184, 404-427 (2005) · Zbl 1081.65011 · doi:10.1016/j.cam.2005.01.018
[4] Bellman, R.; Cook, K., Differential-Difference Equations (1963), Academic Press: Academic Press, New York · Zbl 0105.06402
[5] Boukas, E., Stabilization of stochastic singular nonlinear hybrid systems, Nonlinear Anal., 64, 217-228 (2006) · Zbl 1090.93048 · doi:10.1016/j.na.2005.05.066
[6] Brogliato, B., Some perspectives on the analysis and control of complementarity systems, IEEE Trans. Autom. Control, 48, 918-935 (2003) · Zbl 1364.93356 · doi:10.1109/TAC.2003.812777
[7] Brogliato, B.; Heemels, W., Observer design for Lur’e systems with multivalued mappings: A passivity approach, IEEE Trans. Autom. Control, 54, 1996-2001 (2009) · Zbl 1367.93086 · doi:10.1109/TAC.2009.2023968
[8] de Bruin, J. C.A.; Doris, A.; van de Wouw, N.; Heemels, W. P.M. H.; Nijmeijer, H., Control of mechanical motion systems with non-collocation of actuation and friction: A Popov criterion approach for input-to-state stability and set-valued nonlinearities, Automatica, 45, 405-415 (2009) · Zbl 1158.93400 · doi:10.1016/j.automatica.2008.09.008
[9] Dekker, K.; Verwer, J., Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations (1984), North-Holland: North-Holland, Amsterdam · Zbl 0571.65057
[10] Dong, Y.; Liu, W.; Liang, S., Nonlinear observer design for one-sided Lipschitz systems with time-varying delay and uncertainties, Int. J. Robust Nonlinear Control, 27, 1974-1998 (2017) · Zbl 1367.93089 · doi:10.1002/rnc.3648
[11] Doris, A.; Juloski, A. L.; Mihajlovic, N.; Heemels, W. P.M.; van de Wouw, N.; Nijmeijer, H., Observer designs for experimental non-smooth and discontinuous systems, IEEE Trans. Control Syst. Technol., 16, 1323-1332 (2008) · doi:10.1109/TCST.2008.917236
[12] Hu, G., Observers for one-sided Lipschitz non-linear systems, IMA J. Math. Control Inf., 23, 395-401 (2006) · Zbl 1113.93021 · doi:10.1093/imamci/dni068
[13] Huang, J.; Gao, Y.; Yu, L., Novel observer design method for Lur’e differential inclusion systems, Int. J. Syst. Sci., 47, 2128-2138 (2016) · Zbl 1345.93038 · doi:10.1080/00207721.2014.973929
[14] Huang, J.; Han, Z.; Cai, X.; Liu, L., Adaptive full-order and reduced-order observers for the Lur’e differential inclusion system, Commun. Nonlinear Sci. Numer. Simul., 16, 2869-2879 (2011) · Zbl 1221.93036 · doi:10.1016/j.cnsns.2010.09.036
[15] Huang, J.; Zhang, J.; Han, Z., A note on adaptive observer for the Lur’e differential inclusion system, Nonlinear Dyn., 86, 1227-1237 (2016) · Zbl 1349.93217 · doi:10.1007/s11071-016-2959-y
[16] Juloski, A.; Heemels, W.; Ferrari-Trecate, G., Date-based hybrid modelling of the component placement process in pick-and-place machines, Control Eng. Pract., 12, 1241-1252 (2004) · doi:10.1016/j.conengprac.2004.04.004
[17] Kushner, H., Stochastic Stability and Control (1967), Academic Press: Academic Press, New York · Zbl 0183.19401
[18] Leine, R.; Nijmeijer, H., Dynamics and Bifurcations of Non-Smooth Mechanical Systems (2004), Springer: Springer, Berlin · Zbl 1068.70003
[19] Li, R.; Cao, J., Finite-time stability analysis for Markovian jump memristive neural networks with partly unknown transition probabilities, IEEE Trans. Neural Networ., 28, 2924-2935 (2016) · doi:10.1109/TNNLS.2016.2609148
[20] Mao, X., Stability of stochastic differential equations with Markovian switching, Stoch. Process. their Appl., 79, 45-67 (1999) · Zbl 0962.60043 · doi:10.1016/S0304-4149(98)00070-2
[21] Nikoukhah, R., Delebecque, F. and Ghaoui, L., LMITOOL: A package for LMI optimization in Scilab user’s guide, Tech. Rep., RT-0170, INRIA, 1995.
[22] Osorio, M. and Moreno, J., Dissipative design of observers for multivalued nonlinear systems, in Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, 2006.
[23] Shen, M.; Ye, D., Improved fuzzy control design for nonlinear markovian-jump systems with incomplete transition descriptions, Fuzzy Set. Syst., 217, 80-95 (2013) · Zbl 1285.93058 · doi:10.1016/j.fss.2012.11.014
[24] Shi, P.; Xia, Y.; Liu, G. P.; Rees, D., On designing of sliding-mode control for stochastic jump systems, IEEE Trans. Autom. Control, 51, 97-103 (2006) · Zbl 1366.93682 · doi:10.1109/TAC.2005.861716
[25] Smirnov, G., Introduction to the Theory of Differential Inclusion (2002), SIAM: SIAM, Philadelphia · Zbl 0992.34001
[26] Sun, W.; Gao, H.; Kaynak, O., Finite frequency \(####\) control for vehicle active suspension systems, IEEE Trans. Control Syst. Technol., 19, 416-422 (2011) · doi:10.1109/TCST.2010.2042296
[27] Sun, W.; Gao, H.; Kaynak, O., Vibration isolation for active suspensions with performance constraints and actuator saturation, IEEE/ASME Trans. Mechatron., 20, 675-683 (2015) · doi:10.1109/TMECH.2014.2319355
[28] Tanwani, A.; Brogliato, B.; Prieur, C., Stability and observer design for Lur’e systems with multivalued, non-monotone, time-varying nonlinearities and state jumps, SIAM J. Control Optim., 52, 3639-3672 (2014) · Zbl 1308.93178 · doi:10.1137/120902252
[29] Wang, Z.; Liu, Y.; Liu, X., Exponential stabilization of a class of stochastic system with Markovian jump parameters and mode-dependent mixed time-delays, IEEE Trans. Autom. Control, 55, 1656-1662 (2010) · Zbl 1368.93778 · doi:10.1109/TAC.2010.2046114
[30] Wang, Z.; Qiao, H.; Burnham, K., On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters, IEEE Trans. Autom. Control, 47, 640-646 (2002) · Zbl 1364.93672 · doi:10.1109/9.995042
[31] Zhang, L.; Boukas, E., Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities, Automatica, 45, 463-468 (2009) · Zbl 1158.93414 · doi:10.1016/j.automatica.2008.08.010
[32] Zhang, J.; Han, Z.; Zhu, F.; Zhang, W., Further results on adaptive full-order and reduced-order observers for Lur’e differential inclusions, Commun. Nonlinear Sci. Numer. Simul., 19, 1582-1590 (2014) · Zbl 1457.93052 · doi:10.1016/j.cnsns.2013.09.007
[33] Zhang, L.; Lam, J., Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with incomplete transition descriptions, IEEE Trans. Autom. Control, 55, 1695-1701 (2010) · Zbl 1368.93782 · doi:10.1109/TAC.2010.2046607
[34] Zhang, W.; Su, H.; Zhu, F.; Azar, G. M., Unknown input observer design for one-sided lipschitz nonlinear sysytems, Nonlinear Dyn., 79, 1469-1479 (2015) · Zbl 1345.93104 · doi:10.1007/s11071-014-1754-x
[35] Zhang, W.; Su, H.; Zhu, F.; Bhattacharyya, S. P., Improved exponential observer design for one-sided Lipschitz nonlinear systems, Int. J. Robust Nonlinear Control, 26, 3958-3973 (2016) · Zbl 1351.93028 · doi:10.1002/rnc.3543
[36] Zhang, W.; Su, H.; Zhu, F.; Yue, D., A note on observers for discrete-time lipschitz nonlinear systems, IEEE Trans. Cricuits Syst. II, 59, 123-127 (2012)
[37] Zhang, D.; Zhang, Q.; Du, B., Positivity and stability of positive singular markovian jump time-delay systems with partially unknown transition rates, J. Frankl. Inst., 354, 627-649 (2017) · Zbl 1355.93210 · doi:10.1016/j.jfranklin.2016.09.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.