×

Likelihood inference for Archimedean copulas in high dimensions under known margins. (English) Zbl 1244.62073

Summary: Explicit functional forms for the generator derivatives of well-known one-parameter Archimedean copulas are derived. These derivatives are essential for likelihood inference as they appear in the copula density, conditional distribution functions, and the Kendall distribution function. They are also required for several asymmetric extensions of Archimedean copulas such as Khoudraji-transformed Archimedean copulas. Availability of the generator derivatives in a form that permits fast and accurate computation makes maximum-likelihood estimation for Archimedean copulas feasible, even in large dimensions. It is shown, by large scale simulations of the performance of maximum likelihood estimators under known margins, that the root mean squared error actually decreases with both dimension and sample size at a similar rate. Confidence intervals for the parameter vector are derived under known margins. Moreover, extensions to multi-parameter Archimedean families are given. All presented methods are implemented in the R package nacopula and can thus be studied in detail.

MSC:

62H05 Characterization and structure theory for multivariate probability distributions; copulas
62H12 Estimation in multivariate analysis
65C60 Computational problems in statistics (MSC2010)
62H20 Measures of association (correlation, canonical correlation, etc.)

Software:

R; copula; copula; QRM; nacopula
Full Text: DOI

References:

[1] Barbe, P.; Genest, C.; Ghoudi, K.; Rémillard, B., On Kendall’s process, J. Multivariate Anal., 58, 197-229 (1996) · Zbl 0862.60020
[2] Berg, D.; Aas, K., Models for construction of multivariate dependence—a comparison study, European J. Finance, 15, 639-659 (2009)
[3] Boyadzhiev, K. N., Exponential polynomials, Stirling numbers, and evaluation of some gamma integrals, Abstr. Appl. Anal. (2009) · Zbl 1237.11011
[4] Davison, A. C., Statistical Models (2003), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1044.62001
[5] Efron, B.; Hinkley, D. V., Assessing the accuracy of the maximum likelihood estimator: observed versus expected Fisher information, Biometrika, 65, 457-487 (1978) · Zbl 0401.62002
[6] Embrechts, P.; Hofert, M., On Archimedean copulas and a non-parametric estimation method, TEST, 20, 263-270 (2011) · Zbl 1367.62163
[7] Feller, W., An Introduction to Probability Theory and its Applications, Vol. 2 (1971), Wiley · Zbl 0219.60003
[8] Genest, C.; Ghoudi, K.; Rivest, L.-P., A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, 82, 543-552 (1995) · Zbl 0831.62030
[9] Genest, C.; Ghoudi, K.; Rivest, L.-P., Comment on understanding relationships using copulas by E.W. Frees and E.A. Valdez, North Amer. Act. J., 2, 143-149 (1998)
[10] Genest, C.; Nešlehová, J.; Ben Ghorbal, N., Estimators based on Kendall’s tau in multivariate copula models, Austr. New Zealand J. Statist., 53, 157-177 (2011) · Zbl 1274.62367
[11] Genest, C.; Quessy, J.-F.; Rémillard, B., Goodness-of-fit procedures for copula models based on the probability integral transformation, Scandinavian J. Statist., 33, 337-366 (2006) · Zbl 1124.62028
[12] Genest, C.; Rémillard, B.; Beaudoin, D., Goodness-of-fit tests for copulas: a review and a power study, Insurance Math. Econom., 44, 199-213 (2009) · Zbl 1161.91416
[13] Hofert, M., Construction and sampling of nested Archimedean copulas, (Durante, F.; Härdle, W.; Jaworski, P.; Rychlik, T., Copula Theory and its Applications, Proceedings of the workshop held in Warsaw 25-26 September 2009 (2010), Springer), 147-160
[14] Hofert, M., Sampling Nested Archimedean Copulas with Applications to CDO Pricing (2010), Südwestdeutscher Verlag für Hochschulschriften AG & Co. KG
[15] M. Hofert, A stochastic representation and sampling algorithm for nested Archimedean copulas, J. Statist. Comput. Simul., in press (doi:10.1080/00949655.2011.574632; M. Hofert, A stochastic representation and sampling algorithm for nested Archimedean copulas, J. Statist. Comput. Simul., in press (doi:10.1080/00949655.2011.574632 · Zbl 1271.60026
[16] Hofert, M., Efficiently sampling nested Archimedean copulas, Comp. Statist. Data Anal., 55, 57-70 (2011) · Zbl 1247.62132
[17] Hofert, M.; Mächler, M., Nested Archimedean copulas meet \(R\): the nacopula package, J. Statist. Software, 39, 1-20 (2011)
[18] Hofert, M.; Scherer, M., CDO pricing with nested Archimedean copulas, Quant. Finance, 11, 775-787 (2011) · Zbl 1213.91074
[19] (Jaworski, P.; Durante, F.; Härdle, W. K.; Rychlik, T., Copula Theory and its Applications. Copula Theory and its Applications, Lecture Notes in Statistics—Proceedings, vol. 198 (2010), Springer) · Zbl 1194.62077
[20] Joe, H., Multivariate Models and Dependence Concepts (1997), Chapman & Hall/CRC · Zbl 0990.62517
[21] Joe, H.; Hu, T., Multivariate distributions from mixtures of max-infinitely divisible distributions, J. Multivariate Anal., 57, 240-265 (1996) · Zbl 0863.62047
[22] Kojadinovic, I.; Yan, J., Comparison of three semiparametric methods for estimating dependence parameters in copula models, Insurance Math. Econom., 47, 52-63 (2010) · Zbl 1231.62044
[23] Kojadinovic, I.; Yan, J., Modeling multivariate distributions with continuous margins using the copula \(R\) package, J. Statist. Software, 34, 1-20 (2010)
[24] Liebscher, E., Construction of asymmetric multivariate copulas, J. Multivariate Anal.. J. Multivariate Anal., J. Multivariate Anal., 102, 869-870 (2011), (Corr.) · Zbl 1352.62075
[25] McNeil, A. J.; Frey, R.; Embrechts, P., Quantitative Risk Management: Concepts, Techniques, Tools (2005), Princeton University Press · Zbl 1089.91037
[26] McNeil, A. J.; Nešlehová, J., Multivariate Archimedean copulas, \(d\)-monotone functions and \(\ell_1\)-norm symmetric distributions, Ann. Statist., 37, 3059-3097 (2009) · Zbl 1173.62044
[27] Nelsen, R. B., Dependence and order in families of Archimedean copulas, J. Multivariate Anal., 111-122 (1997) · Zbl 0883.62049
[28] Nelsen, R. B., An Introduction to Copulas (2006), Springer · Zbl 1152.62030
[29] Newey, W. K.; McFadden, D., Large sample estimation and hypothesis testing, (Engle, R. F.; McFadden, D. L., Handbook of Econometrics (1994), Elsevier, North Holland), 2111-2245
[30] Paris, R. B., An inequality for the Bessel function \(J_\nu(\nu x)\), SIAM J. Math. Anal., 15, 203-205 (1984)
[31] Savu, C.; Trede, M., Hierarchies of Archimedean copulas, Quant. Finance, 10, 295-304 (2010) · Zbl 1270.91086
[32] Schlömilch, O., Allgemeine sätze für eine theorie der höheren differential-quotienten, Arch. Math. Phys., 7, 204-214 (1846)
[33] Serfling, R. J., Approximation Theorems of Mathematical Statistics (1980), Wiley · Zbl 0456.60027
[34] Shi, D., Fisher information for a multivariate extreme value distribution, Biometrika, 82, 644-649 (1995) · Zbl 0830.62053
[35] Tsukahara, H., Semiparametric estimation in copula models, Canad. J. Statist., 33, 357-375 (2005) · Zbl 1077.62022
[36] Weiß, G. N.F., Copula parameter estimation: numerical considerations and implications for risk management, J. Risk, 13, 17-53 (2010)
[37] Wu, F.; Valdez, E. A.; Sherris, M., Simulating exchangeable multivariate Archimedean copulas and its applications, Comm. Statist. Simul. Comput., 36, 1019-1034 (2007) · Zbl 1126.62041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.