×

An Hermite-Obreschkoff method for stiff high-index DAE. (English) Zbl 1512.65173

Summary: We have developed an implicit Hermite-Obreschkoff method for the numerical solution of stiff high-index differential-algebraic equations (DAEs). On each integration step, this method requires the computation of Taylor coefficients and their gradients to construct and solve a nonlinear system for the numerical solution, which is then projected to satisfy the constraints of the problem. We derive this system, show how to compute its Jacobian through automatic differentiation, and present the ingredients of our method, such as predicting an initial guess for Newton’s method, error estimation, and stepsize and order control. We report numerical results on stiff DAEs illustrating the accuracy and performance of our method, and in particular, its ability to take large steps on stiff problems.

MSC:

65L80 Numerical methods for differential-algebraic equations
65L04 Numerical methods for stiff equations
Full Text: DOI

References:

[1] Barrio, R., Sensitivity analysis of ODEs/DAEs using the Taylor series method, SIAM J. Sci. Comput., 27, 1929-1947 (2006) · Zbl 1108.65077
[2] Brenan, KE; Campbell, SL; Petzold, LR, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (1996), Philadelphia: SIAM, Philadelphia · Zbl 0844.65058
[3] Bruno, O.; Hoch, D., Numerical differentiation of approximated functions with limited order-of-accuracy deterioration, SIAM J. Numer. Anal., 50, 1581-1603 (2012) · Zbl 1251.65022
[4] Calvo, M.; Lisbona, F.; Montijano, J., On the stability of variable-stepsize Nordsieck BDF methods, SIAM J. Numer. Anal., 24, 844-854 (1987) · Zbl 0644.65042
[5] Carpinelli, M.; Gubitosa, M.; Mundo, D.; Desmet, W., Automated independent coordinates’ switching for the solution of stiff DAEs with the linearly implicit Euler method, Multibody Sys.Dyn., 36, 67-85 (2016) · Zbl 1372.65224
[6] Cheney, EW; Southard, T., A survey of methods for rational approximation, with particular reference to a new method based on a forumla of Darboux, SIAM Rev., 5, 219-231 (1963) · Zbl 0118.29002
[7] Corliss, G.F., Griewank, A., Henneberger, P., Kirlinger, G., Potra, F.A., Stetter, H.J.: High-order stiff ODE solvers via automatic differentiation and rational prediction. In: International Workshop on Numerical Analysis and Its Applications, pp.114-125. Springer, (1996) · Zbl 1540.65179
[8] Díaz-Rodríguez, M.; González-Parra, G.; Arenas, AJ, Nonstandard numerical schemes for modeling a 2-DOF serial robot with rotational spring-damper-actuators, Int. J. Numer. Methods Biomed. Eng., 27, 1211-1224 (2011) · Zbl 1358.70002
[9] Ehle, B., On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems, SIAM J. Math. Anal., 4, 671-680 (1973) · Zbl 0236.65016
[10] EstévezSchwarz, D.; Lamour, R., Projected explicit and implicit Taylor series methods for DAEs, Numer. Algorithms, 88, 615-646 (2021) · Zbl 1487.65109
[11] Gad, E.; Nakhla, M.; Achar, R.; Zhou, Y., A-stable and L-stable high-order integration methods for solving stiff differential equations, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 28, 1359-1372 (2009)
[12] Griewank, A.: ODE solving via automatic differentiation and rational prediction, Pitman Research Notes in Mathematics Series, (1996), pp.36-56 · Zbl 0849.65049
[13] Griewank, A.; Juedes, D.; Utke, J., ADOL-C, a package for the automatic differentiation of algorithms written in C/C++, ACM Trans. Math. Softw., 22, 131-167 (1996) · Zbl 0884.65015
[14] Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems, 2nd edn. Springer Berlin, Heidelberg (1993) · Zbl 0789.65048
[15] Hairer, E.; Wanner, G., Stiff differential equations solved by Radau methods, J. Comput. Appl. Math., 111, 93-111 (1999) · Zbl 0945.65080
[16] Higueras, I., Numerical methods for stiff index-3 DAEs, Math. Comput. Model. Dyn. Syst., 7, 239-262 (2001) · Zbl 1054.34004
[17] Hindmarsh, A.; Brown, P.; Grant, K.; Lee, S.; Serban, R.; Shumaker, D.; Woodward, C., SUNDIALS: suite of nonlinear and differential/algebraic equation solvers, ACM TOMS, 31, 363-396 (2005) · Zbl 1136.65329
[18] Hummel, P.; SeebeckJr, C., A generalization of Taylor’s expansion, Am. Math. Mon., 56, 243-247 (1949) · Zbl 0037.17601
[19] Iavernaro, F.; Mazzia, F., On conjugate-symplecticity properties of a multi-derivative extension of the midpoint and trapezoidal methods, Rend. Semin. Mat, 76, 123-134 (2018) · Zbl 1440.65034
[20] Iavernaro, F.; Mazzia, F.; Mukhametzhanov, MS; Sergeyev, YD, Conjugate-symplecticity properties of Euler-Maclaurin methods and their implementation on the infinity computer, Appl. Numer. Math., 155, 58-72 (2020) · Zbl 1440.65273
[21] Jay, LO, Iterative solution of SPARK methods applied to DAEs, Numer. Algorithms, 31, 171-191 (2002) · Zbl 1055.65100
[22] Lamour, R.; März, R.; Tischendorf, C., Differential-Algebraic Equations: A Projector Based Analysis (2013), Berlin: Springer Science & Business Media, Berlin · Zbl 1276.65045
[23] Lamour, R.; Monett, D., A new algorithm for index determination in DAEs using algorithmic differentiation, Numer. Algorithms, 58, 261-292 (2011) · Zbl 1226.65073
[24] Mazzia, F.: F.Iavernaro, Test set for initial value problem solvers. Tech. Rep.40, Department of Mathematics, University of Bari, Italy, http://pitagora.dm.uniba.it/testset/ (2003)
[25] Mazzia, F.; Sestini, A., On a class of Hermite-Obreshkov one-step methods with continuous spline extension, Axioms, 7, 58 (2018)
[26] Meir, A.; Sharma, A., An extension of Obreshkov’s formula, SIAM J. Numer. Anal., 5, 488-490 (1968) · Zbl 0177.43401
[27] Milenkovic, P., Numerical solution of stiff multibody dynamic systems based on kinematic derivatives, J. Dyn. Syst. Meas. Contr., 136, 061001 (2014)
[28] Miller, JA; Kee, RJ; Westbrook, CK, Chemical kinetics and combustion modeling, Annu. Rev. Phys. Chem., 41, 345-387 (1990)
[29] Milne, WE, A note on the numerical integration of differential equations, J. Res. Natl. Bur. Stand., 43, 537-542 (1949)
[30] Moore, R., Interval Analysis (1966), Englewood: Prentice-Hall, Englewood · Zbl 0176.13301
[31] Nedialkov, NS; Jackson, KR, An interval Hermite-Obreschkoff method for computing rigorous bounds on the solution of an initial value problem for an ordinary differential equation, Reliab. Comput., 5, 289-310 (1999) · Zbl 0947.65081
[32] Nedialkov, NS; Pryce, JD, Solving differential-algebraic equations by Taylor series (I): computing Taylor coefficients, BIT Numer. Math., 45, 561-591 (2005) · Zbl 1084.65075
[33] Nedialkov, NS; Pryce, JD, Solving differential-algebraic equations by Taylor series (II): computing the system Jacobian, BIT Numer. Math., 47, 121-135 (2007) · Zbl 1123.65080
[34] Nedialkov, NS; Pryce, JD, Solving differential-algebraic equations by Taylor series (III): the DAETS code, JNAIAM J. Numer. Anal. Indust. Appl. Math., 3, 61-80 (2008) · Zbl 1188.65111
[35] Negrut, D.; Sandu, A.; Haug, EJ; Potra, FA; Sandu, C., A Rosenbrock-Nystrom state space implicit approach for the dynamic analysis of mechanical systems: II method and numerical examples, Proc. Inst. Mech. Eng. Part K J. Multibody Dyn., 217, 273-281 (2003)
[36] Nguyen-Ba, T.; Yagoub, H.; Hao, H.; Vaillancourt, R., Pryce pre-analysis adapted to some DAE solvers, Appl. Math. Comput., 217, 8403-8418 (2011) · Zbl 1217.65160
[37] Nørsett, SP, One-step methods of Hermite type for numerical integration of stiff systems, BIT Numer. Math., 14, 63-77 (1974) · Zbl 0278.65078
[38] Obreschkoff, N.: Neue Quadraturformeln, Abh. Preuss. Akad. Wiss. Math. Nat. Kl., 4 (1940) · Zbl 0024.02602
[39] Obreschkoff, N., Sur le quadrature mecaniques, Spisanie Bulgar, Akad. Nauk. J. Bulg. Acad. Sci., 65, 191-289 (1942) · Zbl 0063.05990
[40] Obreshkov, N.: Neue quadraturformeln, Verlag der Akademie der Wissenschaften. In: W. de Gruyter (ed) Kommission bei (1940)
[41] Pantelides, CC, The consistent initialization of differential-algebraic systems, SIAM J. Sci. Stat. Comput., 9, 213-231 (1988) · Zbl 0643.65039
[42] Pryce, JD, Solving high-index DAEs by Taylor series, Numer. Algorithms, 19, 195-211 (1998) · Zbl 0921.34014
[43] Pryce, JD, A simple structural analysis method for DAEs, BIT Numer. Math., 41, 364-394 (2001) · Zbl 0989.34005
[44] Scholz, L.; Steinbrecher, A., Regularization of DAEs based on the signature method, BIT Numer. Math., 56, 319-340 (2016) · Zbl 1347.65133
[45] Scholz, L.; Steinbrecher, A., Structural-algebraic regularization for coupled systems of DAEs, BIT Numer. Math., 56, 777-804 (2016) · Zbl 1343.65103
[46] Shampine, LF, Implementation of implicit formulas for the solution of ODEs, SIAM J. Sci. Stat. Comput., 1, 103-118 (1980) · Zbl 0463.65050
[47] Shampine, LF, Efficient use of implicit formulas with predictor-corrector error estimate, J. Comput. Appl. Math., 7, 33-35 (1981) · Zbl 0449.65050
[48] Söderlind, G.; Jay, L.; Calvo, M., Stiffness 1952-2012: sixty years in search of a definition, BIT Numer. Math., 55, 531-558 (2015) · Zbl 1317.65154
[49] Stauning, O., Bendtsen, C.: FADBAD++ web page, (2003). http://www.imm.dtu.dk/fadbad.html
[50] Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, vol. 12. Springer, New York (1993) · Zbl 0771.65002
[51] Wanner, G.: On the integration of stiff differential equations, tech. rep., Université de Genéve, Section de Mathematique, 1211 Genéve 24th, Suisse (1976)
[52] Wanner, G.: On the integration of stiff differential equations. In: Proceedings of the Colloquium on Numerical Analysis, vol. 37 of Internat. Ser. Numer. Math., Basel, 1977, Birkhäuser, pp. 209-226 · Zbl 0361.65071
[53] Zhou, Y.: Stable high order methods for circuit simulation, PhD thesis. Carleton University (2011)
[54] Zolfaghari, R.: Numerical Integration of Stiff Differential-Algebraic Equations, PhD thesis. School of Computational Science and Engineering, McMaster University, Hamilton, Ontario, Canada (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.