×

Projected explicit and implicit Taylor series methods for DAEs. (English) Zbl 1487.65109

Summary: The recently developed new algorithm for computing consistent initial values and Taylor coefficients for DAEs using projector-based constrained optimization opens new possibilities to apply Taylor series integration methods. In this paper, we show how corresponding projected explicit and implicit Taylor series methods can be adapted to DAEs of arbitrary index. Owing to our formulation as a projected optimization problem constrained by the derivative array, no explicit description of the inherent dynamics is necessary, and various Taylor integration schemes can be defined in a general framework. In particular, we address higher-order Padé methods that stand out due to their stability. We further discuss several aspects of our prototype implemented in Python using Automatic Differentiation. The methods have been successfully tested on examples arising from multibody systems simulation and a higher-index DAE benchmark arising from servo-constraint problems.

MSC:

65L80 Numerical methods for differential-algebraic equations
34A09 Implicit ordinary differential equations, differential-algebraic equations
65K10 Numerical optimization and variational techniques

Software:

AlgoPy; InitDAE

References:

[1] Abramowitz, M.; Stegun, IA, Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables (1972), New York: Dover, New York · Zbl 0543.33001
[2] Akishin, PG; Puzynin, IV; Vinitsky, SI, A hybrid numerical method for analysis of dynamics of the classical Hamiltonian systems, Comput. Math. Appl., 34, 2-4, 45-73 (1997) · Zbl 0896.70002 · doi:10.1016/S0898-1221(97)00117-X
[3] Barrio, R., Performance of the Taylor series method for ODEs/DAEs, Appl. Math. Comput., 163, 2, 525-545 (2005) · Zbl 1067.65063
[4] Brenan, KE; Campbell, SL; Petzold, LR, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Unabridged, corr. republ. Classics in Applied Mathematics, 14-14 (1996), Philadelphia: SIAM Society for Industrial and Applied Mathematics, Philadelphia · Zbl 0844.65058
[5] Campbell, SL, The numerical solution of higher index linear time varying singular systems of differential equations, SIAM J. Sci. Stat. Comput., 6, 334-348 (1985) · Zbl 0664.65084 · doi:10.1137/0906024
[6] Campbell, SL; Gear, CW, The index of general nonlinear DAEs, Numer. Math., 72, 2, 173-196 (1995) · Zbl 0844.34007 · doi:10.1007/s002110050165
[7] Corliss, G.F., Griewank, A., Henneberger, P., Kirlinger, G., Potra, F.A., Stetter, H.J.: High-order stiff ODE solvers via automatic differentiation and rational prediction. In: Vulkov, L., Waśniewski, J., Yalamov, P. (eds.) Numerical Analysis and Its Applications. WNAA 1996. Lecture Notes in Computer Science, vol. 1196, pp 114-124 (1997) · Zbl 1540.65179
[8] Deuflhard, P.; Bornemann, F., Numerical mathematics 2. Ordinary differential equations. (Numerische Mathematik 2 Gewöhnliche Differentialgleichungen.) 4th revised and augmented ed. (2013), Berlin: de Gruyter Studium, Berlin · Zbl 1273.65001
[9] Dimova, S.N., Hristov, I.G., Hristova, R.D., Puzynin, I.V., Puzynina, T.P., Sharipov, Z.A., Shegunov, N.G., Tukhliev, Z.K.: Combined explicit-implicit Taylor Series Methods. In: Proceedings of the VIII International Conference “Distributed Computing and Grid-technologies in Science and Education” (GRID 2018), Dubna, Moscow region, Russia, September 10 -14 (2018)
[10] Estévez Schwarz, D., A step-by-step approach to compute a consistent initialization for the MNA, Int. J. Circuit Theory Appl., 30, 1, 1-6 (2002) · Zbl 0998.65084 · doi:10.1002/cta.168
[11] Estévez Schwarz, D., Consistent initialization for DAEs in Hessenberg form, Numer. Algorithms, 52, 4, 629-648 (2009) · Zbl 1192.34013 · doi:10.1007/s11075-009-9304-1
[12] Estévez Schwarz, D., Lamour, R.: InitDAE’s documentation. Available from: https://www.mathematik.hu-berlin.de/ lamour/software/python/InitDAE/html/
[13] Estévez Schwarz, D.; Lamour, R., Projector based integration of DAEs with the Taylor series method using automatic differentiation, J. Comput. Appl Math., 262, 62-72 (2014) · Zbl 1301.65087 · doi:10.1016/j.cam.2013.09.018
[14] Estévez Schwarz, D.; Lamour, R., A new projector based decoupling of linear DAEs for monitoring singularities, Numer. Algorithms, 73, 2, 535-565 (2016) · Zbl 1351.65056 · doi:10.1007/s11075-016-0107-x
[15] Estévez Schwarz, D.; Lamour, R., Consistent initialization for higher-index DAEs using a projector based minimum-norm specification. Technical Report 1 (2016), Humboldt-Universität zu Berlin: Institut für Mathematik, Humboldt-Universität zu Berlin
[16] Estévez Schwarz, D.; Lamour, R., A new approach for computing consistent initial values and Taylor coefficients for DAEs using projector-based constrained optimization, Numer. Algorithms, 78, 2, 355-377 (2018) · Zbl 1409.65049 · doi:10.1007/s11075-017-0379-9
[17] Estévez Schwarz, D., Lamour, R.: InitDAE: Computation of consistent values, index determination and diagnosis of singularities of DAEs using automatic differentiation in Python. Journal of Computational and Applied Mathematics. doi:10.1016/j.cam.2019.112486 (2019) · Zbl 1458.65163
[18] Estévez Schwarz, D., Lamour, R.: A projector based decoupling of DAEs obtained from the derivative array. In: Progress in Differential-Algebraic Equations II, Differential-Algebraic Equations Forum (DAE-F) (2020) · Zbl 1462.34025
[19] Estévez Schwarz, D., Lamour, R., März, R.: Singularities of the Robotic Arm DAE. Progress in Differential-Algebraic Equations II, Differential-Algebraic Equations Forum (DAE-F) (2020) · Zbl 1471.70007
[20] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer (1996) · Zbl 0859.65067
[21] Kirlinger, G., Corliss, G.F.: On implicit Taylor series methods for stiff ODEs. In: Computer Arithmetic and Enclosure Methods. Proceedings of the 3rd International IMACS-GAMM Symposium on Computer Arithmetic and Scientific Computing (SCAN-91), Oldenburg, Germany, 1-4 October 1991, pp 371-379, Amsterdam (1992) · Zbl 0838.65075
[22] Kunkel, P.; Mehrmann, V., Differential-Algebraic Equations - Analysis and Numerical Solution (2006), Zürich: EMS Publishing House, Zürich · Zbl 1095.34004 · doi:10.4171/017
[23] Lamour, R.; März, R.; Tischendorf, C., Differential-Algebraic Equations: A Projector Based Analysis. Differential-Algebraic Equations Forum, vol. 1 (2013), Berlin: Springer, Berlin · Zbl 1276.65045 · doi:10.1007/978-3-642-27555-5
[24] Mazzia, F., Magherini, C.: Test set for initial value problems, release 2.4. Technical report, Department of Mathematics, University of Bari and INdAM, Research Unit of Bari, February 2008. Available from: http://pitagora.dm.uniba.it/ testset
[25] Otto, S.; Seifried, R., Applications of Differential-Algebraic Equations: Examples and Benchmarks, chapter Open-loop Control of Underactuated Mechanical Systems Using Servo-constraints: Analysis and Some Examples. Differential-Algebraic Equations Forum (2019), Cham: Springer, Cham · Zbl 1473.70065
[26] Pryce, JD, Solving high-index DAEs by Taylor series, Numer. Algorithms, 19, 1-4, 195-211 (1998) · Zbl 0921.34014 · doi:10.1023/A:1019150322187
[27] Pryce, JD; Nedialkov, NS; Tan, G.; Li, X., How AD can help solve differential-algebraic equations, Optim. Methods Softw., 33, 4-6, 729-749 (2018) · Zbl 1409.65050 · doi:10.1080/10556788.2018.1428605
[28] Riaza, R., Differential-Algebraic Systems. Analytical Aspects and Circuit Applications (2008), Hackensack: World Scientific, Hackensack · Zbl 1184.34004 · doi:10.1142/6746
[29] Scott, J.R., Solving, ODE: Initial Value Problems with Implicit Taylor Series Methods. Technical report NASA/TM-2000-209400 (2000)
[30] Seifried, R.; Blajer, W., Analysis of servo-constraint problems for underactuated multibody systems, Mech. Sci., 4, 113-129 (2013) · doi:10.5194/ms-4-113-2013
[31] Walter, SF; Lehmann, L., Algorithmic differentiation in Python with AlgoPy, J. Comput. Sci., 4, 5, 334-344 (2013) · doi:10.1016/j.jocs.2011.10.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.